Davide Brivio, Ph.D.

Medical Physics Resident
davide-brivio-phd-sog403619
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Current Position

Medical Physics Resident, Harvard Medical Physics Residency Program

Research Fellow

 

Previous position

Post-doctoral research Fellow, Brigham and Women's Hospital 2014-2019

Process Integration Engineer, STMicroelectronics, Agrate Brianza (Italy) 2012-2013

 

Education

post graduate CAMPEP certificate program Medical Physics, Harvard Medical School 2019

Ph.D., Physics, “Università degli studi di Milano” (University of Milan, Italy).  2012

M.Sc. Physics, “Università degli studi di Milano” (University of Milan, Italy).  2008

B.Sc., Physics, “Università degli studi di Milano” (University of Milan, Italy).  2006

 

Awards

AAPM Jack Fowler Junior Investigator Award 2019

Best Award Travel Fellowship (AAPM) 2019

 

Selected Publications

  1. Robert Lauber, Davide Brivio, Erno Sajo, Juergen Hesser and Piotr Zygmanski “Remote sensing array (RSA) for linac beam monitoring” 2022 Phys. Med. Biol. 67 055004 http://dx.doi.org/10.1088/1361-6560/ac530d
  2. Davide Brivio, E. Sajo, P. Zygmanski “Gold nanoparticle detection and quantification in therapeutic MV beams via pair production” 2021 Phys. Med. Biol. https://doi.org/10.1088/1361-6560/abd954 (Invited submission to the Focus collection “Focus on Early Career Researchers in Physics in Medicine and Biology”)
  3. Davide Brivio, E. Sajo, P. Zygmanski “Self-Powered Multilayer Radioisotope Identification Device” 2021 Med. Phys https://doi.org/10.1002/mp.14717
  4. Davide Brivio, S. Albert, M. P. Gagne, E. Freund, E. Sajo, P. Zygmanski “Nanoporous aerogel-based periodic high-energy electron current (HEC) X-ray sensors”, 2020 J. Phys. D: Appl. Phys. 53 265303 https://doi.org/10.1088/1361-6463/ab83c0
  5. Albert, Davide Brivio, S. Aldelaijan, E. Sajo, J. Hesser, P. Zygmanski “Towards customizable thin-panel low-Z detector arrays: Electrode design for increased spatial resolution ion chamber arrays”, 2020 Phys. Med. Biol. 65 08NT02 https://doi.org/10.1088/1361-6560/ab8109
  6. Davide Brivio, L. Naumann, S. Albert, E. Sajo, Piotr Zygmanski “3D printing for prototyping of low-Z, low-density thin radiation sensor arrays”, Med. Phys. 46 (12), 5770-5779 (2019) https://doi.org/10.1002/mp.13841
  7. Davide Brivio, S. Albert, E. Freund, M. P. Gagne, E. Sajo, P. Zygmanski “Self‐powered nano‐porous aerogel x‐ray sensor employing fast electron current” Med. Phys. 46 (9), 4233-4240. (2019) https://doi.org/10.1002/mp.13701
  8. Davide Brivio, Yida David Hu, Danielle N. Margalit, Piotr Zygmanski “Selection of head and neck cancer patients for adaptive replanning of radiation treatment using kV-CBCT” Biomed. Phys. Eng. Express (2018) https://doi.org/10.1088/2057-1976/aad546.
  9. Davide Brivio, Erno Sajo, Piotr Zygmanski “Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable micro-gaps” Phys. 44, 12 (2017), 6632-6640; doi:10.1002/mp.12636.
  10. Davide Brivio, Erno Sajo, Piotr Zygmanski “Effective contact potential of thin film metal-insulator nanostructures and its role in self-powered nanofilm x-ray sensors” ACS Appl. Mater. Interfaces, 2017, 9 (12), pp 11258–11265, DOI: 1021/acsami.7b01264.
  11. Davide Brivio, Erno Sajo, Piotr Zygmanski A novel interdigital transparent thin-film detector for medical dosimetry” Med. Phys. 44, 5 (2017), 1969-1974 doi: 10.1002/mp.12129.
  12. Davide Brivio, P. Nguyen, E. Sajo, W. Ngwa, P. Zygmanski, “A Monte Carlo study of I-125 prostate brachytherapy with gold nanoparticles: dose enhancement with simultaneous rectal dose sparing via radiation shielding”, Med. Biol. 62(5), 1935-1948 (2017)  https://doi.org/10.1088/1361-6560/aa5bc7.
  13. Davide Brivio, Erno Sajo, Piotr Zygmanski (2016) “Comment on: Polarity effects and apparent ion recombination in microionization chambers. Med. Phys. 43(5), 2141-2142 (2016)”, Med. Phys. (2016) doi:10.1002/mp.12019.
  14. Zhaohui Han, Davide Brivio, Erno Sajo, Piotr Zygmanski “Topological detector: measuring continuous dosimetric quantities with few-element detector array” Med. Biol. 61 (2016) N403–N414; doi:10.1088/0031-9155/61/16/N403.
  15. Zygmanski, S. Shrestha, Davide Brivio, A. Karellas, and E. Sajo “Prototypes of self-powered radiation detectors employing intrinsic high-energy current” Med. Phys. 43, 16 (2016); doi: 10.1118/1.4935532.
  16. Davide Brivio, P. Zygmanski, M. Arnoldussen, Hanlon, E. Chell, E. Sajo, G Makrigiorgos, W. Ngwa,  “Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): a Monte Carlo evaluation”, Phys. Med. Biol. 60 (2015) 9203-9213.
  1. Davide Brivio, E. Sajo, P. Zygmanski, "Towards thin-film self-powered radiation detectors employing disparate conductive layers", Phys. D: Appl. Phys. 48 (2015) 275503.
  2. Cialdi, Davide Brivio, A. Tabacchini, A. M. Kadhim, and M. G. A. Paris, “A novel method to investigate how the spatial correlation of the pump beam affects the purity of polarization entangled state”, Optics Letters 37, 3951 (2012).
  3. G. GenoniS. OlivaresDavide BrivioS. CialdiD. CiprianiA. SantamatoS. Vezzoli, and M. G. A. Paris, "Optical interferometry in the presence of large phase diffusion", Phys. Rev. A 85, 043817 (2012).
  4. Smirne, Davide Brivio, S. Cialdi, B. Vacchini and M. G. A. Paris, "Experimental investigation of initial system-environment correlations via trace distance evolution", Phys. Rev. A 84, 032112 (2011).
  5. Cialdi, Davide Brivio, E. Tesio and M. G. A. Paris, "Nonlocal compensation of pure phase objects with entangled photons", Phys. Rev. A 84, 043817 (2011).
  6. Cialdi, Davide Brivio, E. Tesio and M. G. A. Paris, "Programmable entanglement oscillations in a non-Markovian channel", Phys. Rev. A 83, 042308 (2011).
  7. Cialdi, Davide Brivio and M. G. A. Paris, "Programmable purification of type-I polarization-entanglement", Appl. Phys. Lett. 97, 041108 (2010).
  8. Cialdi, Davide Brivio and M. G. A. Paris, "Demonstration of a programmable source of two-photon multiqubit entangled states", Phys. Rev. A 81, 042322 (2010).
  9. Davide Brivio, S. Cialdi, S. Vezzoli, B. T. Gebrehiwot, M. G. Genoni, S. Olivares, M. G. A. Paris, "Experimental estimation of one-parameter qubit gates in the presence of phase diffusion", Rev. A 81, 012305 (2010).
  10. Guerin, N. Mercadier, F. Michaud, Davide Brivio, L. S. Froufe-Perez, R. Carminati, V. Eremeev, A. Goetschy, S. E. Skipetrov and R. Kaiser, "Towards a random laser with cold atoms", J. Opt. 12, 024002 (2010).
  11. Guerin, N. Mercadier, Davide Brivio and R. Kaiser, "Threshold of a random laser based on Raman gain in cold atoms", Opt. Express 17, 11236 (2009).

 

Book chapters:

  1. Piotr Zygmanski, Davide Brivio and Erno Sajo, “Nanoparticle enhanced radiotherapy: quality assurance perspective” in E. Sajo, P. Zygmanski “Nanoparticle Enhanced Radiation Therapy" IOP Publishing Ltd 2020; Online ISBN: 978-0-7503-2396-3; Print ISBN: 978-0-7503-2394-9. http://dx.doi.org/10.1088/978-0-7503-2396-3ch7
  2. Juergen Hesser and Davide Brivio, “X-ray based nanoparticle imaging” in E. Sajo, P. Zygmanski “Nanoparticle Enhanced Radiation Therapy" IOP Publishing Ltd 2020; Online ISBN: 978-0-7503-2396-3; Print ISBN: 978-0-7503-2394-9. https://doi.org/10.1088/978-0-7503-2396-3ch12

 

Patents / Invention disclosure

  1. BWH 25815 - Invention Disclosure: High Energy Current (HEC) Sensor Arrays for Radiation Detection and Monitoring Based on Extremely Low Density Nanoporous Materials
  2. BWH 2021-346 - Invention Disclosure: Megavoltage X-ray Induced Positron Emission imaging for mapping of high-Z contrast and radiosensitization agents and dose distributions in radiotherapy of cancer
  3. BWH 2022-046 - Invention Disclosure: Resistive electrode detector array for dosimetric monitoring of medical ionizing radiation in imaging and radiotherapy
Located in: Physics Residents