Jan Schuemann, PhD

Head of the Multi-Scale Monte Carlo Modeling Lab
Assistant Professor
JanSchuemann
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Phone: 617 724 4183

Education

  • Visiting student at the University of Calgary (1998), Research Topic: Applications of knot theory to quantum gravity
  • Diplom (MS) degree (2000) at the University of Hamburg, Germany, Title: Inelastic J/ψ-Photoproduction at HERA and the Color Evaporation Model (at H1, DESY, Germany)
  • Ph.D. (2005) degree at National Taiwan University, Taipei, Thesis title: Rare B meson decays with an η’ in the final state

Previous work experience

  • Postdoctorate position at the National United University, Taiwan (stationed at NTU, Taiwan, and Belle, KEK, Japan)

  • Research-Fellow of the Japanese Society for the Promotion of Science (JSPS) and Feodor Lynen Research Fellow (Alexander v. Humboldt Foundation) at Belle, KEK, Japan, related work: DAQ expert, B→ hadron hadron analysis

  • Project Researcher at the Institute for the Physics and Mathematics of the Universe, Tokyo University, Japan, Topic: Upgrading the Super-Kamiokande neutrino detector

  • Research Fellow, Massachusetts General Hospital and  Harvard Medical School, Topic: Creating an easy to use Tool for Particle Simulations for medical physics and particle therapy

 Honors and Scholarships

  • Winner of the “Jugend forscht” (Youth research) competition, Hamburg,Germany, Topic: Strange planetoid orbits in double star systems

  • Scholarship of the Friedrich-Ebert Foundation (FES, Germany)

  • Scholarship of the Deutscher Akademischer Austausch-Dienst (DAAD, German academic exchange office, Germany)

  • Ministry of Education Scholarship to outstanding  Foreign Students (Taiwan)

  • Fellowship from the Japanese Society for the Promotion of Science (JSPS) and Feodor Lynen research fellowship from the Alexander v. Humboldt Foundation

  • Poster Prize for Best Poster in the category of Physics, 52nd Annual Conference of the Particle Therapy Co-Operative Group (PTCOG)

  • Best in Physics Prize and ASTRO (American Society for Radiation Oncology) in 2014 & 2015 and Travel Grant for the ASTRO annual meeting (2014)
  • Early Career Travel Awards, 201

Committee Service

 

  • Radiation Research Society: Finance Committee (since 2016), Program Committee (2016/7), Early Career Investigator Interest Group (since 2017), Councilor of Physics (starting 9/2017)

  • American Association of Physicists in Medicine: Abstract Review Committee (2017)

Recent publication of importance to the field

1.      Akagi R, Aso T, Faddegon B, Kimura A, Matsufuji N, Nishio T, Omachi C, Paganetti H, Perl, J, Sasaki T, Sawkey D, Schuemann J, Shin J, Toshito T, Yamashita T and Yoshida H. The PTSim and TOPAS Projects, bringing Geant4 to the Particle Therapy Clinic. Progress in nuclear science and technology (2):912-17 (2011)

2.      Schuemann J, Paganetti H, Shin J, Faddegon B, Perl. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4. Physics in medicine and biology 57:3281-94 (2011)

3.      Shin J, Perl J, Schuemann J, Paganetti H, Faddegon B. A consistent, modular framework to handle multiple time-dependent quantities in Monte Carlo simulations as implemented in TOPAS. Physics in medicine and biology 57:3295-3308  (2011)

4.      Carabe A, Moteabbed M, Depauw N, Schuemann Jand Paganetti H. “Range uncertainty in proton therapy due to variable biological effectiveness.” Physics in medicine and biology 57:1159-72 (2012), * PMB featured articlePMB Top 10 of 2012

5.      Butterworth K T, McGarry C K, Clasie B, Carabe-Fernandez A, Schuemann J,Depauw N, Tang S, McMahon S J, Schettino G, O’Sullivan J M, Lu H M, Kooy H, Paganetti H, Hounsell A R, Held K D and Prise K M., Relative biological effectiveness (RBE) and out-of-field cell survival responses to passive scattering and pencil beam scanning proton beam deliveries, Phys. Med. Biol. 57:6671-80 (2012)

6.      Perl J, Shin J, Schuemann J, Faddegon B, Paganetti H. TOPAS - An innovative proton Monte Carlo platform for research and clinical applications. Medical Physics 39(11):6818-37, (2012) * editors pick

7.      *Jia X, Schuemann J,Paganetti H, and Jiang SB. “GPU-based fast Monte Carlo dose calculation for proton therapy.” Physics in medicine and biology 57(23): 7783-97, (2012) * PMB featured article

8.      Ramos-Méndes J A, Perl J, Faddegon B, Schuemann Jand Paganetti H. “Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy”, Medical Physics 40(4), 041718-27 (2013)

9.      Bueno M, Paganetti H, Duch M A and Schuemann J.“A method to assess the need for clinical Monte Carlo dose calculation for small proton therapy fields”, Medical Physics 2013; 40,081704

10.   Testa M* and Schuemann J*, Lu H M, Paganetti H. “Experimental validation of the TOPAS Monte Carlo system for proton therapy applications”,Medical Physics 40(12):121719, (2013) *both authors contributed equally

11.   * Schuemann J, Dowdell S, Grassberger C, Min CH and Paganetti H, Site-specific range uncertainties caused by dose calculation algorithms for proton therapy, Phys. Med. Biol. 59(15), 4007-31, (2014) * PMB featured article

12.   Testa M, Min CH, Verburg J, Schuemann J,Lu HM, Paganetti H, Range verification of passively scattered proton beams based on prompt gamma time patterns, Phys. Med. Biol. 59(15), 4181-95, (2014)

13.   *Lin YT, McMahon S, Scarpelli M, Paganetti H and Schuemann J, “Comparing gold nano-particle induced microscopic dose enhancement irradiated with protons and photons: a Monte Carlo simulation”, Phys. Med. Biol. 59(24), 7675-89 (2014), * PMB Highlights of 2014

14.   Moteabbed M, Schuemann J, Paganetti H (2014), “Dosimetric Feasibility of Real-Time MRI-Guided Proton Therapy”, Medical Physics 41:111713 (2014)

15.   Giantsoudi D*, Schuemann J*, Xun J, Dowdell S, Jiang S, Paganetti H (2014), “Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study”, Phys. Med. Biol. 60(6), 2257, *both authors contributed equally

16.   Lin YT, McMahon S, Paganetti H and Schuemann J(2014), “Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy”, Phys. Med. Biol. 60(10); 4149-4168

17.   Polster L, Schuemann J,Rinaldi I, Burigo L, McNamara A, Stewart R, Attili A, Carlson D, Sato T, Ramos-Mendez J, Faddegon B, Perl J and Paganetti H(2015) “ Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints”,Phys. Med. Biol 60(13), 5053

18.   Ramos-Mendez J, Perl J, Schuemann J, Shin J, Paganetti H and Faddegon B(2015)  Improved efficiency in Monte Carlo simulation for passive-scattering proton therapy”, Phys. Med. Biol 60(13), 5019

19.   Ramos-Mendez J, Perl J, Schuemann J, Shin J, Paganetti H, Faddegon B (2015) “A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy”, Phys. Med. Biol. 60(13), 5037

20.   Schuemann J*, Giantsoudi D*, Grassberger C, Moteabbed M, Min CH, Paganetti H (2015) “Assessing the clinical impact of approximations in analytical dose calculations for proton therapy “, Int. J. Rad. Bio. Phys., 92(5), 1157-64 , * both authors contributed equally

21. Verburg J, Grassberger C, Dowdell S, Schuemann J,Seco J, Paganetti H (2015), “Automated Monte Carlo Simulation of Proton Therapy Treatment Plans”, Technol. Cancer Res. Treat. 15(6), NP35-46, doi: 10.1177/1533034615614139

22.   *Lin YT, Paganetti H, McMahon S, and Schuemann J (2015)“ Gold Nanoparticle Induced Vasculature Damage in Radiotherapy: Comparing Protons, Megavoltage Photons and Kilovoltage Photons”, Medical Physics, 42, 5890, * Editors Pick

23.   McNamara A, Schuemann J,Paganetti H. (2015) “A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data”, Phys. Med. Biol. 60 (21), 8399

24.   *Schuemann J, Berbeco R, Chithrani DB, Cho S, Kumar R, McMahon S, Sidhar S and Krishnan S(2016) “Roadmap to clinical use of gold nanoparticles for radiosensitization”,Int. J. Rad. Bio. Phys., 94(1), 189-205, *Invited White Paper.

25.   Geng C, Moteabbed M, Xie Y, Schuemann J, Yock T, Paganetti H (2015) “Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning”, Phys. Med. Biol. 61(1), 12.

26.   McNamara AL ,  Kam WWY,  Scales N,  McMahon SJ,  Bennett JW,  Byrne HL,  Schuemann J Paganetti H,  Banati R and Kuncic Z (2016) “Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol ”, Phys. Med. Biol 61(16), 5993.

27.   Qin N, Botas P, Giantsoudi D, Schuemann J, Tian Z, Jiang S, Paganetti H, Xun J (2016) “Recent developments and comprehensive evaluations of a GPU-based Monte Carlo package for proton therapy”, Phys. Med. Biol. 61(20), 7347.

28.   McMahon S, Schuemann J, Paganetti H, Prise K (2016) “Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage”, Scientific Reports 6, 33290.

29.   Geng C, Daartz J, Lam-Tin-Cheung K, Bussiere M, Shih H, Paganetti H, Schuemann J(2016) ”Limitations of analytical dose calculations for small field proton radiosurgery”, Phys. Med. Biol. 62(1), 246-57

30.   McMahon SJ, McNamara AL, Schuemann J, Prise KM, Paganetti H (2016) “Mitochondria as a target for radiosensitisation by gold nanoparticles”, Journal of Physics: Conference Series 777012008

31.   McNamara A, Geng C, Turner R, Ramos-Mendes J, Perl J, Held K, Faddegon B, Paganetti H, Schuemann J(2017) “Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries”, Physica Medica, 33, 207-217.

32.   Underwood TSA, Sung W, McFadden CH, McMahon SJ, Hall DC, McNamara AL, Paganetti H, Sawakuchi G, Schuemann J(2017) “Comparing stochastic proton

 

Selected publications from previous fields of research (out of over 200 publications, an extended list of publications can be found at https://goo.gl/dwEIVA)

1.     Schuemann J et al. (142 authors), The Belle Collaboration, Observation of B→D0 η’ and B→D*0 η’. Physical Review D 72(1), 011103 (R) (2005)

2.     Schuemann J et al. (176 authors), The Belle Collaboration, Evidence of B→ η’ π and improved measurements of B→ η’ K, Physical Review Letters 97(6), 061802 (2006)

3.     Bayatien GL et al. (2010 authors, author #1375), The CMS Collaboration, “CMS technical design report, volume II: Physics performance”, Journal of Physics G: Nuclear Particle Physics 34, 995-1579 (2007)

4.     Schuemann J et al. (145 authors), The Belle Collaboration, “Search for B decays into η′ρ, η′K, η′φ, η′ω, and η′η() at Belle”, Physical Review D 75(9), 092002 (2007)

5.     Lin S W et al. (187 authors, author #165), The Belle Collaboration, Difference in direct charge-parity violation between charged and neutral B meson decays. Nature (452):332-35 (2008)

6.     Ueno K et al (111 authors, author #23), The Super-Kamiokande Collaboration, Search for GUT monopoles at Super-Kamiokande, Astroparticle Physics 36(1), 131-136 (2012)

 

 

Located in: Lab Heads | Research