People Directory

Yi Wang, PhD, DABR

Head, Laboratory of Artificial Intelligence in Radiation Oncology (LAIRO)
Assistant Professor
image114
This email address is being protected from spambots. You need JavaScript enabled to view it.
Radiation Physics, 100 Blossom St, Cox-349, Boston, MA 02114
617 724 0000

 

Residency

2010-2012  Harvard Medical Physics Residency Program, Harvard Medical School  

 

Fellowship

2009-2010  Francis H. Burr Proton Therapy Center, Massachusetts General Hospital  

 

Education

2004-2009  Ph.D. in Biomedical Engineering, University of Michigan, Ann Arbor

2002-2004  M.S. in Biomedical Engineering, University of Michigan, Ann Arbor

1998-2002  B.S. in Automation, Beijing University of Astronautics and Aeronautics, China  

 

Honors and Awards

2016           Nomination for the Bowditch Prize, MGH Board of Trustees

2015           Employee of the Year, Department of Radiation Oncology, MGH  

 

Academic Appointments

2016-present     Assistant Professor of Radiation Oncology, Harvard Medical School

2012-2016           Instructor of Radiation Oncology, Harvard Medical School  

 

Hospital Appointments

2012-present      Assistant Biophysicist, Department of Radiation Oncology, MGH  

 

Certification

2013           Certified by the American Board of Radiology in Therapeutic Medical Physics  

 

Clinical Expertise

Lead physicist, Electron Therapy

Lead physicist, RayPhysics including beam modeling

Project manager, VMAT Project manager, Flattening Filter Free (FFF)

Other core duties: TPS commissioning, upgrade and QA, proton and photon SRS, SBRT, IMRT, TBI, and Elekta Agility.  

 

Educational Duties

Mentor, Harvard Medical Physics Residency Program Mentor, Suffolk University Medical Dosimetry Program

Lecturer, Massachusetts Institute of Technology, HST 533  

 

Professional Service

2019 - present   Voting member, AAPM Machine Learning Subcommittee (MLSC)

 

Laboratory

Head, Laboratory of Artificial Intelligence in Radiation Oncology (LAIRO)

https://twitter.com/mgh_lairo


Research Interests

1. AI for auto segmentation, auto planning, auto plan quality and patient specific QA

2. Big data science on auto RT structure name recognition and standardization 

3. End-to-end solution for automated and intelligent adaptive radiation therapy

4. Automation in treatment planning

5. Innovative optimization and delivery techniques 

 

Media Reports

1. "Machine learning: a roadmap for clinical validation", Physics World, July 12, 2019.

https://physicsworld.com/a/machine-learning-a-roadmap-for-clinical-validation/

 

Keynote Presentations

1. "Introduction to machine learning in RayStation", RayStation Symposium, Adelaide, Australia, November 2019.

2. "The MGH experience on developing and implementing machine learning driving radiation therapy", RayStation Symposium, Adelaide, Australia, November 2019.

 

Invited Talks

1. "Machine learning-driven online adaptive radiation therapy", Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, Australia, November 2019.

2. "Multi-strategy machine learning optimization (MLO) based on MCO experiences for liver and pancreatic cancers", RaySearch Evening Symposium at AAPM, San Antonio, TX, July 2019.

3. "Segmented crystalline scintillators for megavoltage cone-beam CT", Department of Radiology, Stanford University, Palo Alto, CA, September 2010.

 

Current Members

G. Phil Broussard, MBA, CMD

Nitish Chopra, MS

Christopher Cotter, MS, DABR

Michael Kirk, PhD, DABR (Co-PI)

Trinh Nguyen, MS, CMD

Jacqueline Nyamwanda, MS, CMD

Hugh Prichard, BS, CMD

Yi Wang, PhD, DABR (PI)

Stephen Zieminski, MS, CMD

 

Past Members

Peter Paetzold, BS, CMD

Michael Young, MS

Samantha Edgington, MS, CMD

 

Peer-reviewed Journal Articles 

  1. M. Moteabbed, A. Trofimov, F. H. Kha, Y. Wang, G. C. Sharp, A. L. Zietman, J. A. Efstathiou, and H. Lu, “Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer,” Medical Physics, Vol. 45(9), 4011-4019 (2018).
  2. S. Zieminski, M. Khandekar, and Y. Wang, “Assessment of multi-criteria optimization (MCO) for volumetric modulated arc therapy (VMAT) in hippocampal avoidance whole brain radiation therapy (HA-WBRT),” Journal of Applied Clinical Medical Physics, Vol. 19(2), 184-190 (2018). http://onlinelibrary.wiley.com/doi/10.1002/acm2.12277/epdf
  3. Y. Lin, B. P. Chen, W. Li, Z. Perko, Y. Wang, M. Testa, R. Schneider, H Lu, and L. E. Gerweck, "The Relative Biological Effect of Spread-Out Bragg Peak Protons in Sensitive andResistant Tumor Cells," International Journal of Particle Therapy, Vol. 4(3), 33-39 (2017). http://www.theijpt.org/doi/pdf/10.14338/IJPT-17-00025.1
  4. M. Young, D. Craft, C. Colbert, K. Remillard, L. Vanbenthuysen, and Y. Wang, “Volumetric-modulated arc therapy using multicriteria optimization for body and extremity sarcoma,” Journal of Applied Clinical Medical Physics, Vol. 17(6), 283-291 (2016). http://onlinelibrary.wiley.com/doi/10.1120/jacmp.v17i6.6547/epdf
  5. M. Moteabbed, A. Trofimov, G. C. Sharp, Y. Wang, A. L. Zietman, J. A. Efstathiou, and H-M Lu, "A prospective comparison of the effects of interfractional variaions on proton therapy and IMRT for prostate cancer," International Journal of Radiation Oncology*Biology*Physics, in press (2015)
  6. M. Moteabbed, G. C. Sharp, Y. Wang, A. Trofimov, J. A. Efstathiou, and H-M. Lu, “Validation of a Deformable Image Registration Technique for Cone Beam CT-Based Dose Verification,” Medical Physics, Vol. 42, 196-205 (2014).
  7. Y. Wang, J. A. Efstathiou, H. Lu, G. C. Sharp, A. Trofimov, "Hypofractionated proton therapy for prostate cancer: Dose delivery uncertainty due to interfractional motion," Medical Physics, Vol. 40, 071714 (2013).
  8. Y. Wang, J. A. Efstathiou, G. C. Sharp, H. Lu, I. Ciernik, A. Trofimov, “Evaluation of the dosimetric impact of inter-fractional anatomical variations on prostate proton therapy using daily in-room CT images,” Medical Physics, Vol. 38, 4623-4633 (2011).
  9. A. Trofimov, P. L. Nguyen, J. A. Efstathiou, Y. Wang, H. Lu, M. Engelsman, S.Merrick, C. Cheng, J. R. Wong and A. L. Zietman, “Interfractional variations in the setup of pelvic bony anatomy and soft tissue, and their implications on the delivery of proton therapy for localized prostate cancer,” International Journal of Radiation Oncology*Biology*Physics, Vol. 80, 928-937 (2011).
  10. Y. Wang, Y. El-Mohri, L. E. Antonuk and Q. Zhao, “Monte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging,” Physics in Medicine and Biology, Vol. 55, 3657-3673 (2010).
  11. Q. Zhao, L. E. Antonuk, Y. El-Mohri, Y. Wang, H. Du, A. Sawant, Z. Su and J. Yamamoto, “Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging,” Medical Physics, Vol. 37, 2738-2748 (2010).
  12. Y. Wang, L. E. Antonuk, Q. Zhao, Y. El-Mohri and L. Perna, “High-DQE EPIDs based on thick, segmented BGO and CsI:Tl scintillators: Performance evaluation at extremely low dose,” Medical Physics, Vol. 36, 5707-5718 (2009).
  13. Y. Wang, L. E. Antonuk, Y. El-Mohri and Q. Zhao, “A Monte Carlo investigation of Swank noise for thick, segmented, crystalline scintillators for radiotherapy imaging,” Medical Physics, Vol. 36, 3227-3238 (2009).
  14. L. E. Antonuk, Q. Zhao, Y. El-Mohri, H. Du, Y. Wang, R. Street, J. Ho, R. Weisfild and Y. William, “An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays,” Medical Physics, Vol. 36, 3322-3339 (2009).
  15. Y. Wang, L. E. Antonuk, Y. El-Mohri, Q. Zhao, A. Sawant and H. Du, “Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization,” Medical Physics, Vol. 35, 145-158 (2008).
  16. H. Du, L. E. Antonuk, Y. El-Mohri, Q. Zhao, Z. Su, J. Yamamoto and Y. Wang, “Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2,” Physics in Medicine and Biology, Vol. 53, 1325-1351 (2008).
  17. Y. El-Mohri, L. E. Antonuk, Q. Zhao, Y. Wang, Y. Li, H. Du and A. Sawant, “Performance of a high fill factor, indirect detection prototype flat-panel imager for mammography,” Medical Physics, Vol. 34, 315-327 (2007).
  18. A. Sawant, L. E. Antonuk, Y. El-Mohri, Q. Zhao, Y. Wang, Y. Li, H. Du and L. Perna, “Segmented crystalline scintillators: Empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(Tl) detector,” Medical Physics, Vol. 33, 1053-1066 (2006).
  19. L. E. Antonuk, Y. El-Mohri and Y. Wang, “Erratum: “Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications” [Med. Phys. 27, 289–306 (2000)] and “Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager” [Med. Phys. 28, 2538–2550 (2001)]” Medical Physics, Vol. 33, 251 (2006).
  20. Y. Li, L. E. Antonuk, Y. El-Mohri, Q. Zhao, H. Du, A. Sawant and Y. Wang, “Effects of x-ray irradiation on polycrystalline silicon, thin-film transistors,” Journal of Applied Physics, Vol. 99, 064501-1 to 064501-7 (2006).
  21. Z. Su, L. E. Antonuk, Y. El-Mohri, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluroroscopic and radiotherapy irradiation conditions,” Physics in Medicine and Biology, Vol. 50, 2907-2928 (2005).
  22. A. Sawant, L. E. Antonuk, Y. El-Mohri, Q. Zhao, Y. Li, Z. Su, Y. Wang, J. Yamamoto, H. Du, I. Cunningham, M. Klugerman and K. Shah, “Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging,” Medical Physics, Vol. 32, 3067-3083 (2005).
  23. A. Sawant, L. E. Antonuk, Y. El-Mohri, Y. Li, Z. Su, Y. Wang, J. Yamamoto, Q. Zhao, H. Du, J. Daniel and R. A. Street, “Segmented phosphors – MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging,” Medical Physics, Vol. 32, 553-565 (2005).
  24. Y. Kang, L. E. Antonuk, Y. El-Mohri, L. Hu, Y. Li, A. Sawant, Z. Su, Y. Wang, J. Yamamoto and Q. Zhao, “Examination of PbI2 and HgI2 photoconductive materials for direct detection, active matrix, flat-panel imagers for diagnostic x-ray imaging,” IEEE Transactions on Nuclear Science, Vol. 52, 38-45 (2005).  

Conference Papers

  1. Y. El-Mohri, L. E. Antonuk, Q. Zhao, R. B. Choroszucha, and Y. Wang, “Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators,” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 7622, 762203 (2010). 
  2. L. E. Antonuk, Y. El-Mohri, Q. Zhao, M. Koniczek, J. McDonald, M. Yeakey, Y. Wang, M. Behravan, R. A. Street and J. Lu, “Exploration of the potential performance of polycrystalline silicon-based active matrix flat-panel imagers incorporating active pixel sensor architectures,” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 6913, 69130I-69131 to 69130I-69113 (2008). 
  3. L. E. Antonuk, Y. Wang, M. Behravan, Y. El-Mohri, Q. Zhao, H. Du and A. Badano, “Quantitative exploration of performance enhancements offered by active matrix x-ray imagers fabricated on plastic substrates,” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 6510, 65100P-65101 to 65100P-65110 (2007).
  4. Y. Wang, L. E. Antonuk, Y. El-Mohri, A. Sawant, Q. Zhao, H. Du and Y. Li, “Theoretical investigation of very high quantum efficiency, segmented, crystalline detectors for low-contrast visualization in megavoltage cone-beam CT,” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 6142, 61421P-61421 to 61421P-61411 (2006).
  5. L. E. Antonuk, Y. Li, H. Du, Y. El-Mohri, Q. Zhao, J. Yamamoto, A. R. Sawant, Y. Wang, Z. Su, J. P. Lu, R. A. Street, R. L. Weisfield and B. Yao, “Investigation of strategies to achieve optimal DQE performance from indirect detection, active matrix, flat-panel imagers (AMFPIs) through novel pixel amplification architectures,” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 5745, 18-31 (2005).
  6. L. E. Antonuk, Q. Zhao, Z. Su, J. Yamamoto, Y. El-Mohri, Y. Li, Y. Wang and A. R. Sawant, “Systematic development of input-quantum-limited fluoroscopic imagers based on active matrix, flat-panel technology,” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 5368, 127-138 (2004).
  7. A. Sawant, L. E. Antonuk, Y. El-Mohri, Y. Kang, Y. Li, Z. Su, Y. Wang, J. Yamamoto and Q. Zhao, “Exploring new frontiers in x-ray quantum limited portal imaging using active matrix flat-panel imagers (AMFPIs),” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 5030, 478-489 (2003).
  8. Y. El-Mohri, L. E. Antonuk, K.-W. Jee, Y. Kang, Y. Li, A. Sawant, Z. Su, Y. Wang, J. Yamamoto and Q. Zhao, “Evaluation of novel direct and indirect detection active matrix, flat-panel imagers (AMFPIs) for mammography,” Proceedings of SPIE Conference on the Physics of Medical Imaging, Vol. 5030, 168-180 (2003).
  9. Y. Kang, L. E. Antonuk, Y. El-Mohri, L. Hu, Y. Li, A. Sawant, Z. Su, Y. Wang, J. Yamamoto and Q. Zhao, “Examination of PbI2 and HgI2 photoconductive materials for direct detection, active matrix, flat-panel imagers for diagnostic x-ray imaging,” 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 3, 2119-2123 (2004).  

Book Chapter

  1. D. Yip, Y. Wang, and T. F. DeLaney, "Role of Protons Versus Photons in Modern Radiotherapy: Clinical Perspective," Chapter 19, Treatment Planning in Radiation Oncology, 4th Edition, edited by F. Khan, J. P. Gibbons, and P. W. Sperduto, 326-339 (2016).  

Thesis

  1. Y. Wang, “High detective quantum efficiency (DQE) flat-panel imagers based on segmented crystalline scintillators and mercuric iodide photoconductors for radiotherapy imaging”, Doctoral Dissertation, University of Michigan, Ann Arbor, MI (2009).

 

Located in: Lab Heads