The Faculty of Medicine of Harvard University Curriculum Vitae

Date Prepared:	January 17, 2023
Name:	Thomas Bortfeld, Ph.D.
Office Address: Home Address:	Massachusetts General Hospital (MGH) Department of Radiation Oncology Division of Radiation Biophysics 100 Blossom St Boston, MA 02114 215 Hamilton St, Cambridge, MA 02139
Work Phone:	617-724-1180
Work Email:	tbortfeld@mgh.harvard.edu
Place of Birth:	Hannover, Germany

Education:

11/1984	Vordiplom (B.S.)	Geophysics	University of Kiel, Germany
07/1988	Diplom (M.S.)	Physics	University of Heidelberg, Germany
11/1990	Dr. rer. nat. (Ph.D.)	Physics (summa cum laude) (Wolfgang Schlegel, Josef Bille)	University of Heidelberg
07/1995	Habilitation and Venia Legendi	Physics	University of Heidelberg

Postdoctoral Training:

02/91-09/92	Research Associate (Postdoctoral Fellow)	Medical Physics (PI: Wolfgang Schlegel)	German Cancer Research Center (DKFZ), Department of Biophysics and Medical Radiation Physics
10/92-06/93	Postdoctoral Fellow	Medical Physics (PI: Arthur Boyer)	Institute of Radiation Physics, MD Anderson Cancer Center, Houston, TX
07/93-10/94	Research Associate (Postdoctoral Fellow)	Medical Physics (PI: Wolfgang Schlegel)	DKFZ, Department of Medical Physics
01/13-12/14	Physician Leadership Development Program	Massachusetts General Physicians Organization	Massachusetts General Hospital

Faculty Academic Appointments:

07/95-05/01	Privatdozent (Associate Professor)	Physics	Faculty of Physics and Astronomy, University of Heidelberg
06/01-04/08	Associate Professor	Radiation Oncology	Harvard Medical School
05/08-	Professor	Radiation Oncology	Harvard Medical School
11/17-	Honorary Professor	Faculty of Medicine	University of Freiburg, Germany
03/01/2022 -	Andres Soriano Endowed Professorship	Radiation Oncology	Harvard Medical School

Appointments at Hospitals/Affiliated Institutions:

11/94-05/96	Scientific staff member	Medical Physics	German Cancer Research Center (DKFZ)
06/96-05/01	Tenured Scientist	Medical Physics	DKFZ
06/01-05/08	Associate Radiation Biophysicist	Radiation Oncology (Radiation Biophysics)	Massachusetts General Hospital
06/08-	Radiation Biophysicist	Radiation Oncology (Radiation Biophysics)	Massachusetts General Hospital

Major Administrative Leadership Positions:

Local		
1994-2001	Head of working group "Physical Models"	German Cancer Research Center
1996-2001	Deputy Head, Department of Medical Physics	German Cancer Research Center
2001-2008	Director of Physics Research	Massachusetts General Hospital (Radiation Oncology)
2008-	Chief, Division of Radiation Biophysics	Massachusetts General Hospital (Radiation Oncology)

Committee Service:

Local		
1999	Steering council	Heidelberg IMRT school
1999-2001	Budget committee	German Cancer Research Center (Radiological Diagnostics and Therapy)
2001-2006	Organizer, Medical Physics seminar	Massachusetts General Hospital (Radiation Oncology)

2004-2010	Boston host of "International Master's Program in Medical Physics" of the University of Heidelberg-Mannheim	Massachusetts General Hospital (Radiation Oncology)
2006-2008	Proton beam scanning oversight committee	Massachusetts General Hospital, Radiation Oncology
2009-2013	Promotions, Reappointments, and Appointments Committee (P&R)	Harvard Medical School
2010-2011	Chair, ad hoc committee for promotion to full professor	Harvard Medical School
2012-	Chair, proton projects oversight committee	Massachusetts General Hospital, Radiation Oncology
2013-	Chair/co-chair, medical physics residency program oversight committee	Harvard Medical School
2013	Ad hoc committee for promotion to full professor	Harvard Medical School
2014-	Internal Steering Committee, Proton Program Project Grant (P01)	Massachusetts General Hospital, Radiation Oncology
2014-2017	Subcommittee of Professors: recommendations to the Dean regarding appointments at the level of full professor	Harvard Medical School
2020-	Co-chair, Promotion committee	Massachusetts General Hospital, Radiation Oncology
Regional		
1995-1997	Heavy ion therapy steering committee	GSI Darmstadt, Germany
National		
2013	Organizing committee "Heavy ion therapy workshop"	Department of Energy (DOE) and NCI, Bethesda, MD
2013	Co-chair, "Expanding Horizons 2013"	Bethesda, MD
2014	Mini-symposium "Optimizing the dynamics of radiation therapy of cancer"	SIAM Opt meeting, San Diego, CA
International		
2000	Organization of ICCR 2000 meeting, Heidelberg (with Wolfgang Schlegel)	International Conference on the Use of Computers in Radiation Therapy
2004	Organization of "The Interdisciplinary Experts' Workshop on Intensity-Modulated Radiation Therapy, Medical Imaging, and Optimization Theory" (with Yair Censor and Gabor Herman)	Department of Mathematics, University of Haifa, Israel

2004	Scientific committee, ICCR 2004, Seoul, Korea	International Conference on the Use of Computers in Radiation Therapy
2008	Faculty opponent, PhD thesis defense of Peter Kimstrand	University of Uppsala, Sweden
2009	Theme Chair "Radiation Oncology" (with Uwe Oelfke)	World Congress Medical Physics and Biomedical Engineering, Munich, Germany
2009	Organizing committee, "Mini Conference on Multicriteria Optimization Techniques in Radiation Therapy" (with David Craft)	International conference at Massachusetts General Hospital, Boston
2015	Organizing committee, Radiation Oncology Track	World Congress on Medical Physics and Biomedical Engineering, Toronto, Canada
2015	Thesis committee, PhD thesis defense of Marco Pinto	University of Lyon, France
2018-	Co-chair	RAPTOR: real-time adaptive particle therapy
2018-	Co-founder and co-chair of the international consortium	Optimal Stopping in Radiation Therapy (OSRT)
2019	Scientific committee, ICCR 2019, Montreal, Canada	International Conference on the Use of Computers in Radiation Therapy
2020-	Consultant for Report Committee 32: Dose Prescription, Reporting and Recording in Advanced Optimization Strategies: Application to Dose Painting and Robust Planning	International Commission on Radiation Units and Measurements (ICRU)
2020	Thesis committee, PhD thesis defense of Archonteia Kyroudi	University of Lausanne, Switzerland
2021	Thesis committee, PhD thesis defense of Silvia Fabiano	University of Zürich, Switzerland
2021-	Scientific Advisory Board	Helmholtz-Zentrum Dresden-Rossendorf, Germany

Professional Societies:

Member, IMRT subcommittee, Liaison from European Society for Therapeutic Radiology and Oncology (ESTRO)
Member, work group on IMRT
Therapy track organizer
Chair, Therapy Track (Scientific Program Subcommittee)
f F N T

	2007-2008	Scientific Program Director, Therapy, AAPM 50th annual meeting
	2007-2013	Member, Joint Working Group for Research Seed Funding Initiative
	2008	Scientific Program Co-Director, Therapy
	2010-2017	Co-Chair with Robert Jeraj, Working Group on Future Research and Academic Medical Physics (FUTURE)(WGFRMP)
	2017	Co-Chair: Provocative Questions in Medical Physics, Boston meeting
	2018-2019	Member, Chiefs of Academic Medical Physics Programs
	2018-2020	Vice-Chair, Working Group on Future Research and Academic Medical Physics (FUTURE)(WGFRMP)
	2019-	Member, Management of Medical Physics Programs and Departments (MMPPD)
1995-	Deutscher Hochschulverband (DHV) (German Society of University Teachers)	
1996-	European Society for Therapeutic Radiology and Oncology (ESTRO)	
	1997, 2001	Member, scientific program committee, annual meeting
	1998-2002, 2004-2006	Teaching staff ESTRO course on conformal radiotherapy, Amsterdam, The Netherlands
	2018-	Member, task group "Future of Medical Physicists in Radiation Oncology", co- sponsored by AAPM
	2019	Co-organizer, think tank "The most provocative questions for medical physicists in Radiation Oncology", co- sponsored by AAPM
	2019	Co-organizer, with Jan Unkelbach, 3 rd ESTRO physics workshop "Computational methods for clinical target volume definition", co-sponsored by AAPM
	2021	Co-chair, with Patrick Wohlfahrt and Vicki Taasti, 4 th ESTRO physics workshop "Clinical Translation of CT Innovations in Radiation Oncology: Opportunities, Requirements and Standardisation"
2000-	Deutsche Gesellschaft für Medizinische Physik (DGMP)	

2008-2009	American Society for Therapeutic Radiology and Oncology (ASTRO)	
	2008-2009	Member, Radiation Physics Committee of the Research Council
2017-	American Physical Society	
	2017-2020	Secretary and Treasurer, Topical Group on Medical Physics (GMED), co-sponsored by AAPM

Grant Review Activities:

2002-2010	Radiation Therapeutics and Biology Study Section	NCI
	2002-2010	Ad-hoc member
2005-2008	Special emphasis panel	NCI
	2005-2008	Reviewer, Program Project Grants (P01), including presentation to parent committee
2018	Helmholtz Impulse Fund	Helmholtz Association (largest scientific organization in Germany)
	2018	Reviewer, International Helmholtz Research Schools

Editorial Activities:

• Ad hoc Reviewer

Physics in Medicine and Biology Medical Physics Radiotherapy and Oncology International Journal of Radiation Oncology, Biology, Physics Physical Review Journals IEEE Journals

• Other Editorial Roles

1997-2001, 2006-	International Advisory Board	Physics in Medicine and Biology
1997-2005	Editorial Board	Physica Medica
2002-2005	Editorial Board	Physics in Medicine and Biology
2003-	Editorial Board	Radiotherapy and Oncology

2004	Editor	High-Precision Radiation Therapy of Moving Targets. Bortfeld T, Chen GTY eds. Seminars in Radiation Oncology. 2004;14(1):1-100.
2007-2013	Editorial Board	European Journal of Medical Physics
2007	Advisory Board	Medizinische Physik
2013	Editor	Controversies in Proton Therapy. Brada M, Bortfeld T eds. Seminars in Radiation Oncology. 2013;23(2):75-153.
2020-	Editorial Review Board	Physical and Engineering Sciences in Medicine
2021	Guest Editor	IEEE Transactions on Radiation & Plasma Medical Sciences, special issue on advanced topics in particle radiotherapy, Jee K-W, Bortfeld T, El Naqa I, Dong L, guest editors
2021	Editor, with T. Rock Mackie	Medical Physics virtual issue on "Advances in radiation treatment delivery and quality assurance" <u>https://aapm.onlinelibrary.wiley.com/doi/</u> toc/10.1002/(ISSN)2473-4209.advances- in-radiation-treatment-delivery-and-qa

Honors and Prizes:

1990	Richtzenhain Award	German Cancer Research Center (DKFZ)	Best dissertation in cancer research in 1990
1994	Helax-Award	Helax AB, Uppsala, Sweden	Best scientific contribution at XI ICCR (International Conference on the Use of Computers in Radiotherapy)
1995	Young Investigator Award, 3rd place	American Association of Physicists in Medicine (AAPM)	Outstanding scientific paper presentation at 1995 annual AAPM meeting
2001	German Innovation Award (Deutscher Zunkunftspreis) finalist (top 4)	The German President	Development of intensity- modulated radiation therapy (IMRT)
2004	Fellow	Institute of Physics, London	
2008	Artium Magistrum, honoris causa	Harvard University	

2009	Fellow	American Association of Physicists in Medicine (AAPM)	
2015	Alfred-Breit-Preis (highest award of the DEGRO)	German Society for Radiation Oncology (DEGRO)	Intensity-modulated radiation therapy (IMRT)
2016	Wissenschaftspreis: Forschung im Verbund (Science Award: Research Networks)	Fraunhofer Society	Multi-criteria optimization (MCO) in radiation therapy
2018	Glocker medal (highest award of the DGMP)	German Society for Medical Physics (DGMP)	
2019	Australia-Harvard fellowship	Harvard Club of Australia foundation	
2021	Elected member	German National Academy of Sciences Leopoldina	Scientific excellence
2022	Honorary member	European Society for Radiotherapy and Oncology (ESTRO)	Outstanding scientific contributions in the field of Radiation Oncology

Report of Funded and Unfunded Projects

Past

1995-1996	Implementation of a fast photon dose calculation algorithm into the 3D treatment planning program "PLATO"
	Nucletron B.V., Veenendaal, The Netherlands
	PI – Investigator initiated
1996-1999	Developments of methods for the generation of intensity modulated beams with the help of a LINAC-integrated multileaf collimator
	Siemens Medical Systems, Concord, CA
	Co-PI – Investigator initiated
1997-2000	Optimization of combined therapy with electrons and photons
	Deutsche Forschungsgemeinschaft (DFG)
	Co-PI – Investigator initiated
1997-2002	Conformal radiotherapy with inverse planning and intensity modulated photon beams
	Tumorzentrum Heidelberg/ Mannheim
	Co-PI – Investigator initiated
2000-2002	Optimization of diagnostics and therapy of breast cancer: Advances in radiotherapy, physical and technical aspects
	Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)
	Co-PI – Investigator initiated
2000-2002	Optimization and verification of radiotherapy with intensity modulated photon beams
	British-German Academic Research Collaboration
	PI – Investigator initiated
2001-2003	Radioplan
	Bundesministerium für Bildung und Forschung (BMBF) Co-PI

2001-2003	A dynamic real-time tool for improved planning of conformal radiotherapy Deutsche Krebshilfe
2002-2014	PI – Investigator initiated Proton Radiation Therapy Research NIH/NCI P01 CA21239
	Project-PI, Project 3 (\$2,322,378) Project-PI, Project 4 (\$2,007,712)
2004-2008	Robust IMRT Planning Based on EUD Criteria US / Israel Binational Science Foundation PI – Investigator initiated
2004-2012	Multi-Criteria IMRT Optimization NIH/NCI R01 CA103904 PI (\$2,443,980)
2005-2007	Proton Radiotherapy Optimization Siemens Medical systems PI – Investigator initiated
2007-2013	Management of Breathing Effects in Radiotherapy Planning NIH/NCI R01 CA118200 PI (\$1,598,444)
2008-2009	Multi-Criteria IMRT Optimization MGH ECOR formulaic bridge support PI (\$57,500)
2008-2010	Clinical Implementation of Research Results NIH/NCI C06 CA059267 (Federal Share of program income)
2008-2011	PI – Investigator initiated Outcome Assessment: MRI Imaging of Radiation Induced Tissue Damage NIH/NCI C06 CA059267 (Federal Share of program income) PI (\$374,173)
2009-2020	Optimizing the parameters of external beam radiation therapy Philips Medical Systems PI (\$1,203,383)
2008-2021	Multi-criteria optimization for radiation therapy Raysearch laboratories, Stockholm, Sweden PI (\$675,000)
Current	
2015-2024	Therapy Imaging Program NIH/NCI C06 CA059267 (Federal Share of program income) PI (\$1,443,728, years 1,2)
2020-2023	International research network "Optimal stopping in radiation therapy" German Research Foundation DFG TH 1569/3-1 Partner
2021-2024	Innovative Training Networks, Marie Sklodowska-Curie Actions: "RAPTOR Real-time Adaptive Particle Therapy Of cancer" European Union, EU 955956 Partner
2022-2027	Automated interactive definition of the clinical target volume in radiation oncology NIH/NCI R01CA266275 PI
2022-2027	An Ionizing Radiation Acoustics Imaging (iRAI) Approach for guided Flash Radiotherapy

NIH/NCI R01CA266803 Co-PI

Projects Submitted for Funding

Training Grants and Mentored Trainee Grants

2009-2019 Training Future Proton Scientists NIH/NCI C06 CA059267 (Federal Share of program income) PI (\$858,476)

Unfunded Current Projects

2020 Democratization of proton therapy

Report of Local Teaching and Training

Teaching of Students in Courses:

1996	Exercises in Mechanics Physics undergraduate students	University of Heidelberg 2 hours / week, 15 weeks
1996, 1997	Exercises in Electricity and Magnetism Physics undergraduate students	University of Heidelberg 2 hours / week, 15 weeks per year
1996-2000 5 years	Seminar: Physical methods in medicine Physics undergraduate students	University of Heidelberg 2 hours / week, 15 weeks per year
1998	Medical Physics I (course created with Uwe Oelfke) Physics undergraduate students	University of Heidelberg 2 hours / week, 15 weeks
1999	Medical image reconstruction and therapy planning (course created with Uwe Oelfke) Physics undergraduate students	University of Heidelberg 2 hours / week, 15 weeks
2000, 2001	Exercises in Relativity and Quantum Mechanics Physics undergraduate students	University of Heidelberg 2 hours / week, 15 weeks per year
1994, 1997, 2001 3 years	CT imaging and image reconstruction Graduate students in the graduate student program "3-D tumor diagnostics and therapy using radiological methods and lasers"	University of Heidelberg 4 hours per year
2007	HST.187 (course created de novo): Physics of Radiation Oncology – Sharpening the Edge Graduate students	Harvard/MIT Health Sciences and Technology (HST) Program 2 hours per week, 13 weeks
2008	HST.187 (course created de novo): Heavy Charged Particles for Cancer Radiation Therapy Graduate students	Harvard/MIT Health Sciences and Technology (HST) Program 2 hours per week, 13 weeks

2009	HST.531: Medical Physics of Proton Radiation Therapy Graduate students	Harvard/MIT Health Sciences and Technology (HST) Program 2 hours per week, 13 weeks
2013, 2015	HST.S14: Optimization problems in radiation therapy and medical imaging	Harvard/MIT Health Sciences and Technology (HST) Program 2 hours per week, 12 weeks per year

Formal Teaching of Residents, Clinical Fellows and Research Fellows (post-docs):

2002-2004	Radiation physics	HMS
3 years	Radiation Oncology residents	2x2 hours per year

Mentored Trainees and Faculty:

1990-1991	Kay-Uwe Kasch, PhD / Professor of Medical Radiation Physics, Dean for Mathematics, Physics, Chemistry at Beuth University of Applied Sciences, Berlin Career stage: MS student, Radiation Protection Physics (Dörschel), Dresden. Mentoring role: thesis co-advisor. Accomplishments: fast dose calculation.
1990-1994	Carsten Schulze, PhD / Team Manager, Siemens Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: fast 3D kernel-based dose calculation.
1992-1996	Jörg Stein, PhD / Consultant Career stage: MS student, PhD student, Physics, Dresden, Heidelberg. Mentoring role: thesis advisor. Accomplishments: intensity modulation with multileaf collimators, beam angle optimization, impactful publications.
1994-1997	Konrad Preiser, PhD / Professor, BA Mannheim Germany Career stage: Dr.sc.hum. student, Medical Informatics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: interactive user interface for inverse planning, methods have been copied and adopted by all treatment planning systems around the globe and are still in use today.
1995-1996	Klaus Hartwig, MS / Software developer Career stage: MS student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: beam intensity modulation with compensators for clinical practice.
1995-1996	Andreas Mahr, PhD / Vice Rector and Dean of the Faculty for Technology, cooperative State University Heidenheim Career stage: MS student, Medical Informatics, Heilbronn. Mentoring role: thesis advisor. Accomplishments: relational database for physical base data in treatment planning.
1997-1998	Andreas Helbig, MS Career stage: MS student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: dosimetric verification of IMRT.
1997-2000	Gunilla Küster, PhD / European Patent Office, Munich Germany Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: Monte Carlo based hardware optimization for IMRT.

1997-2000	Lothar Spies, PhD / Managing director and founder, Jung diagnostics Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: cone-beam CT, scatter correction.
1997-2001	Burkhard Groh, PhD / Siemens Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: flat panel imager for image guidance.
1997-2001	Uwe Oelfke, PhD / Professor and Head of Joint Department of Physics, Institute of Cancer Research, London Career stage: Visiting scientist, DKFZ and University of Heidelberg. Mentoring role: getting started in Heidelberg after return to Germany from Canada. Accomplishments: started Medical Physics teaching program in the Physics Department. Collaboration on inverse planning, several joint publications.
1997-2001	Alexander Werling, PhD Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: scatter correction in PET imaging.
1998-1999	Julia (Ahlswede) Albright / VP solutions, NextGen Healthcare Career stage: MS student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: assessment of treatment techniques and collimation.
1998-2001	Matthias Ebert, PhD / Teacher Career stage: PhD student, Informatics, Heidelberg-Mannheim. Mentoring role: thesis advisor. Accomplishments: image reconstruction and image guidance for conformal radiation therapy.
1999-2001	Stefan Wesarg, PhD / Head of competence center at Fraunhofer IGD Career stage: MS student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: short scan algorithms for limited angle CT.
1999-2002	Simeon Nill, PhD / Clinical scientist, Institute of Cancer Research, London Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: multi-modal treatment planning including intensity-modulated proton therapy.
1999-2002	Luciana Pavel, PhD / Strategic coach Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: effect of motion on hollow organs such as rectum.
2000-2001	Christian Scholz, PhD / Product Manager, Siemens Career stage: MS student, Physics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: KonRad treatment planning.
2001-2002	Kimmo Jokivarsi, PhD Career stage: research fellow. Mentoring role: research supervisor. Accomplishments: quantify effects of organ motion on IMRT delivery. Joint publication has become the most frequently cited paper published in Phys Med Biol in 2002.
2001-2002	Ward Jenneknes, PhD / Department Head Medical Physics and Technology, Maasstad Hospital Rotterdam Career stage: research fellow. Mentoring role: research supervisor. Accomplishments: development toward IMPT dose delivery.
2001-2003	Christian Thieke, MD PhD / Associate Professor, scientific coordinator LMU Munich Career stage: PhD student, Physics, Heidelberg. Mentoring role: thesis advisor.

	Accomplishments: multi-criteria treatment planning – development and clinical application, several publications. Varian Physics Award, ESTRO 2003; Richtzenhain award, DKFZ, 2005.
2002-2004	John Wolfgang, PhD / Instructor at HMS, MGH Career stage: postdoctoral fellow, now a clinical physicist and data expert. Mentoring role: research supervisor. Accomplishments: joint publications.
2002-2006	Alexander Scherrer, PhD / Team leader Optimization at Fraunhofer ITWM Career stage: PhD student, Mathematics, Kaiserslautern. Mentoring role: thesis advisor. Accomplishments: multi-criteria optimization in treatment planning – voxel/bixel clustering to accelerate Pareto surface calculation, publications.
2002-	Alexei Trofimov, PhD / Assistant Professor at HMS, MGH Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments: many impactful publications on inverse planning and intensity-modulated proton therapy. Alexei was the very first recipient of the AAPM Jack Fowler Junior Investigator Award in 2004.
2003	Jan Wilkens, PhD / Professor at TU Munich, Head of Medical Physics at Klinikum rechts der Isar Career stage: PhD student. Mentoring role: research supervisor. Accomplishments: assessment of activation of gold seeds by proton irradiation, technical report.
2003	Nadine Siemer Career stage: MS student. Mentoring role: research supervisor. Accomplishments: inclusion of equivalent uniform dose (EUD) constraints in IMRT optimization.
2003-2008	Benjamin Martin, PhD / Development Manager, MathWorks Career stage: PhD student, Electrical Engineering, Boston University. Mentoring role: thesis advisor. Accomplishments: voxel sampling to accelerate dose optimization, several joint publications.
2004	Michael Fernald Career stage: recipient of AAPM Summer Undergraduate Fellowship. Mentoring role: mentor and host. Accomplishments: motion compensation in IMRT, phantom tests and simulation. Poster presentation at 2005 AAPM annual meeting.
2004	Sven Süptitz Career stage: student, Computer Science, BA Mannheim. Mentoring role: research supervisor. Accomplishments: publication database development and deployment.
2004-2006	Katia Parodi / Professor and Chair of Medical Physics, LMU Munich Career stage: postdoctoral fellow. Mentoring role: research advisor. Accomplishments: proton range verification with PET imaging, theory and clinical application at MGH. Several joint publications. Many subsequent awards, including the IEEE Bruce Hasegawa Young Investigator Medical Imaging Science Award (2009) and the AAPM John Laughlin Young Scientist Award (2015).
2004-2007	Timothy Chan, PhD / Professor of Industrial Engineering, University of Toronto Career stage: PhD student, Operations Research, MIT. Mentoring role: thesis advisor. Accomplishments: robust planning for treatment of lung tumors, several joint publications. Dantzig Dissertation Award from INFORMS (2007).
2004-2009	Antje Knopf, PhD / Associate Professor, Scientific Coordinator, National Center for Tumor Diseases, Germany Career stage: MS student, then PhD student, Physics, Heidelberg. Mentoring role: thesis

	advisor. Accomplishments: proton range verification through PET. Several publications. AAPM Young Investigator Award 2 nd place (2007). ESTRO-Varian award (2008).
2004-	David Craft, PhD / Assistant professor at HMS, MGH Career stage: postdoctoral fellow, now faculty. Mentoring role: research advisor. Accomplishments: Multi-Criteria Optimization (MCO), from early development to clinical application and routine treatment planning. Many joint publications.
2005-2007	Tarek Halabi, PhD / Entrepreneur Career stage: PhD student, Physics, UMass Amherst. Mentoring role: thesis advisor. Accomplishments: multi-criteria optimization with dose-volume criteria, several joint publications.
2005-2008	Sairos Safai, PhD / Physicist, Paul Scherrer Institute (PSI), Switzerland Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments: deeper understanding of the advantages of intensity modulation in proton therapy, detailed comparison of the penumbra in collimated broad beams and pencil beam scanning, joint publications.
2005-2016	Jan Unkelbach, PhD / Assistant Professor of Medical Physics, University of Zürich, Switzerland Career stage: PhD student, then postdoctoral fellow, then Assistant Professor. Mentoring role: thesis advisor and research supervisor. Accomplishments: robust optimization in proton therapy planning, optimization of arc therapy planning, modeling tumor spread for glioma, many joint publications.
2007-2009	Omid Nohadani, PhD / Associate Professor of Industrial Engineering and Management Sciences, Northwestern University Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments: motion compensation with 4D optimization, stochastic optimization for improved dosimetric robustness, joint publications in those areas.
2008-2009	Michael Gensheimer, MD / Clinical Associate Professor, Radiation Oncology, Stanford Career stage: MD student. Mentoring role: research supervisor, research year. Accomplishments: proton range verification through MRI changes in the spine for medulloblastoma patients, highly original publication.
2008, 2009	Steffen Remmele, PhD / CTO, PowerBrain.Shop Career stage: PhD student, Applied Informatics, Heidelberg. Mentoring role: thesis advisor. Accomplishments: PET imaging for proton range verification, deconvolution of the dose from the PET image, joint publication.
2009-2011	Dualta McQuaid, PhD / Medical Physicist, Royal Marsden Hospital, Sutton, UK Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments: 4D treatment planning, multicriteria VMAT optimization, publications.
2009-2013	Jagdish Ramakrishnan, PhD / Research scientist at Facebook Career stage: PhD student, Electrical Engineering, MIT. Mentoring role: thesis advisor. Accomplishments: dynamic programming to optimize the time course of radiation therapy, several publications.
2010-2011	Yading Yuan, PhD / Associate Professor of Radiation Oncology, Mt Sinai Hospital, NY Career Stage: Physics resident. Mentoring role: research supervisor. Accomplishments: quantification of MRI changes in liver after proton therapy, joint publications.

2010-2012	Wei Chen, PhD / Software engineer at Facebook Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments: robust multicriteria treatment planning, highly original and impactful publications.
2011	Jeremiah Wala, MD / Internal Medicine Resident, UCSF Career stage: student, HST program at Harvard-MIT. Mentoring role: research supervisor. Accomplishments: VMAT optimization, joint publications.
2011-2013	Ehsan Salari, PhD / Associate Professor of Industrial and Manufacturing Engineering, Wichita State University Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments: combined optimization of radiation and chemotherapy, VMAT optimization, several joint publications.
2011-	Joost Verburg, PhD / Assistant Professor at HMS, MGH Career stage: PhD student, Physics, University of Eindhoven. Mentoring role: thesis advisor. Accomplishments: prompt gamma imaging development for proton range verification/correction. Joint publications. Several awards including AAPM Young Investigator Award 3 rd place (2015), Michael Goitein award at PTCOG (2019).
2012	Russell Wolf Career stage: student, Physics, Cornell University. Mentoring role: research supervisor. Accomplishments: effect of MR magnet on proton beam, publication.
2012	Nathalie Rochet, MD Career stage: visiting fellow with travel award from Heidelberg. Mentoring role: research supervisor. Accomplishments: use of multicriteria optimization in whole abdomen radiation therapy, conference presentation.
2012	Christian Richter / Professor and Chief of Physics, OncoRay Dresden Career stage: PhD student, University of Dresden. Mentoring role: research supervisor. Accomplishments: dynamics of MRI changes after proton therapy in liver, potential for proton range verification, patient response assessment, joint publications.
2014	Birgit Müller, PhD Career stage: intern from TU Munich. Mentoring role: research supervisor. Accomplishments: study on physician-driven multicriteria optimization, publication.
2014-2015	Roland Schnürer, PhD / Application Engineer, Accelerator Science and Technology Centre UK Career stage: MS student. Medical Physics, Düsseldorf. Mentoring role: thesis advisor. Accomplishments: in-vivo beam range verification for pencil beam scanning. Thesis completed, conference presentation.
2014-	Susu Yan, PhD / Instructor at HMS, MGH Career stage: Physics resident, research year, then faculty member. Mentoring role: research supervisor. Accomplishments: democratization of proton therapy, work with MIT robotics, several publications and patents.
2015-	Marco Langhans, MS Career stage: MS student, University of Oldenburg, then PhD student, University of Freiburg. Mentoring role: thesis advisor. Accomplishments: heuristic for 4π treatment delivery, CTV auto segmentation, several publications.
2017-2019	Fernando Hueso-González, PhD Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments:

	clinical deployment of prompt gamma range detection, collision detection during treatment planning, publications.
2018-	Ali Ajdari, PhD / Instructor at HMS, MGH Career stage: postdoctoral fellow, then faculty. Mentoring role: research advisor. Accomplishments: development of the OSRT concept, Optimal Stopping in Radiation Therapy, creation of international OSRT consortium, joint publications.
2018-2023	Sebastian Tattenberg, MS Career stage: PhD student, Physics, LMU Munich. Mentoring role: thesis co-advisor. Accomplishments: quantification of the benefit of range uncertainty reduction, publication.
2019-2020	Patrick Wohlfahrt / Siemens Healthineers Career stage: postdoctoral fellow. Mentoring role: research supervisor. Accomplishments: clinical application of dual energy CT, invited review paper, 2021 ESTRO Physics Workshop organization.
2019-2021	Stefan ten Eikelder, MS Career stage: PhD student, Operations Research, Tilburg University. Mentoring role: thesis advisor. Accomplishments: treatment length optimization, adjustable robust optimization for treatment planning, conic optimization algorithms, several publications.
2020-	Samantha Hickey, MS Career stage: PhD student, Medical Physics, University of Freiburg. Mentoring role: thesis co-advisor.
2021-	Zihang Qiu, MS Career stage: PhD student, Operations Research, University of Amsterdam. Mentoring role: thesis co-advisor.
2022-	Beatrice Foglia, MS Career stage: PhD student, Physics, LMU Munich. Mentoring role: thesis co-advisor.

Local Invited Presentations:

No presentations below were sponsored by 3rd parties/outside entities
Those presentations below sponsored by outside entities are so noted and the sponsor(s) is (are) identified.

2012 Harvard Applied Physics Colloquium: Physics Against Cancer

Report of Regional, National and International Invited Teaching and Presentations

 \boxtimes No presentations below were sponsored by 3^{rd} parties/outside entities

Those presentations below sponsored by outside entities are so noted and the sponsor(s) is (are) *identified*.

Before 2001:

- Over 20 invited teaching lectures at international workshops, summer schools, and conferences (e.g., ESTRO, SGSMP, ESMP, DGMP winter school, AIFB, CCIO (Warsaw), Oncological Center Moscow, CAMS (Beijing))
- Over 30 invited lectures and plenary presentations at scientific conferences and seminars (e.g., Nobel conference 2000, DEGRO 1999+2000, ASTRO 1999, AAPM 1999, ICCR 1997, DGMP, ESTRO 1995+96+97+98+99+2000, ART (Munich) 1991, Karolinska Institute (Stockholm, Sweden), PSI (Villigen, Switzerland), MD Anderson Cancer Center (Houston, TX), Memorial Sloan Kettering Cancer Center (New York), MGH)
- Faculty opponent, thesis defense of Anders Gustafsson (Karolinska Institute + University of Stockholm) 1996

2001 and beyond:

Regional

2002-2004 3 years	Undergraduate teaching at Northeastern University: Seminar Course in Radiation Oncology Physics (jointly with George TY Chen), 2 hours / week, 10 weeks per year Boston, MA
2004	NSF Information and Data Management Workshop Cambridge, MA
2005	American Association of Physicists in Medicine (AAPM), New England Chapter meeting Andover, MA
2007	PUMBA: first ORC healthcare conference (MIT) Cambridge, MA
2009	American Association of Physicists in Medicine (AAPM), New England Chapter meeting Boylston, MA
2013	American Association of Physicists in Medicine (AAPM), New England Chapter meeting, Keynote Boston, MA
2019	New England Chapter of the AAPM Boston, MA

National

2001	International Symposium on 3D Conformal Radiation Therapy and Intensity Modulated Radiation Therapy Williamsburg, VA
2002	ORART – Operations Research Applied to Radiation Therapy Washington, DC
2002	Visiting Professor, University of Wisconsin-Madison, Department of Medical Physics Madison, WI

2003	7th International Symposium on 3D Conformal Radiation Therapy and Intensity Modulated Radiation Therapy San Francisco, CA
2003	Visiting Professor, Stony Brook University Hospital, Division of Radiation Physics Stony Brook, NY
2003	IMRT Practicum at Sea Fort Lauderdale, FL
2003	American Association of Physicists in Medicine (AAPM), Summer School Colorado Springs, CO
2004	American Society for Therapeutic Radiology and Oncology (ASTRO), Annual meeting Atlanta, GA
2004	Visiting Professor, Memorial Sloan Kettering Cancer Center, Department of Medical Physics New York, NY
2004	Visiting Professor, University of Michigan at Ann Arbor, Department of Radiation Oncology Ann Arbor, MI
2004	Visiting Professor, MD Anderson Cancer Center, Department of Radiation Physics Houston, TX
2004	American Association of Physicists in Medicine (AAPM), Annual meeting Pittsburgh, PA
2005	Image-Guided IMRT Practicum at Sea Seattle, WA
2005	American Association of Physicists in Medicine (AAPM), Annual meeting Seattle, WA
2005	Visiting Professor, Massachusetts Institute of Technology, Operations Research Center Cambridge, MA
2005	Visiting Professor, Fox Chase Cancer Center, Department of Radiation Physics Philadelphia, PA
2005	Radiological Society of North America (RSNA), Annual meeting Chicago, IL
2006	American Association of Physicists in Medicine (AAPM), Annual meeting Orlando, FL
2006	Visiting Professor, Rensselaer Polytechnic Institute, Department of Electrical Engineering Troy, NY
2007	American Association of Medical Dosimetrists (AAMD), Annual meeting New Orleans, LA
2007	American Association of Physicists in Medicine (AAPM), Annual meeting Minneapolis, MN
2007	MD Anderson Roundtop meeting Roundtop, TX

2008	ASTRO IGRT symposium Newport Beach, CA
2008	NIRS-MD Anderson symposium on clinical issues for particle therapy Houston, TX
2008	AAPM annual meeting Houston, TX
2008	ASTRO annual conference Boston, MA
2009	12 th Annual Nagalingam Suntharalingam Lecture, and Visiting Professor Thomas Jefferson Hospital and University Philadelphia, PA
2009	AAPM conference on promises and perils of proton therapy Baltimore, MD
2009	AAPM annual meeting Anaheim, CA
2010	AAPM annual meeting Philadelphia, PA
2010	ASTRO annual conference San Diego, CA
2010	City University New York, invited lecture New York, NY
2011	Visiting Professor, University of Pennsylvania Medical School, Department of Radiation Oncology Philadelphia, PA
2011	Visiting Professor, Memorial Sloan Kettering Cancer Center, Departments of Radiation Oncology and Medical Physics New York, NY
2012	ASTRO annual meeting Boston, MA
2013	AAPM annual conference Indianapolis, IN
2014	AAPM annual conference (3 invited talks) Austin, TX
2014	Symposium in honor of Rock Mackie Madison, WI
2015	Rutgers University New Brunswick, NJ
2015	Visiting Professor, University of Chicago Medical School, Department of Radiation Oncology
2015	Chicago, IL AAPM Summer School Colorado Springs, CO

2015	AAPM annual conference Anaheim, CA
2015	RSNA Chicago, IL
2016	Samulski Lecture, Duke University, and Visiting Professor Department of Radiation Oncology Durham, NC
2017	AAPM annual conference Denver, CO
2018	Winter Institute of Medical Physics (keynote lecture) Breckenridge, CO
2018	ASTRO annual conference San Antonio, TX
2019	Barry Berman Memorial Lecture, George Washington University, Department of Physics Washington, DC
2022	Increase the global access to proton radiation therapy Global Health Catalyst Summit Washington, DC

International

2001	ISRO-ICRO, 6th International Congress of Radiation Oncology Melbourne, Australia
2001	IMRT and Other Conformal Techniques in Practice, course of the European Society of Therapeutic Radiology and Oncology (ESTRO) Amsterdam, The Netherlands
2001	3rd Takahashi Memorial International Workshop on 3 Dimensional Conformal Radiotherapy Nagoya, Japan
2002	International Meeting on Progress in Radio-oncology ICRO/ÖGRO Salzburg, Austria
2002	IMRT and Other Conformal Techniques in Practice, course of the European Society of Therapeutic Radiology and Oncology (ESTRO) Amsterdam, The Netherlands
2002	European Society for Therapeutic Radiology and Oncology (ESTRO), Annual meeting Prague, Czech Republic
2003	European Society for Therapeutic Radiology and Oncology (ESTRO) Dresden, Germany
2003	German Society of Medical Physics (DGMP), Annual meeting Heidelberg, Germany
2004	The Interdisciplinary Experts' Workshop on Intensity-Modulated Radiation Therapy Haifa, Israel

2004	IMRT and Other Conformal Techniques in Practice, course of the European Society of Therapeutic Radiology and Oncology (ESTRO) Amsterdam, The Netherlands
2004	Visiting Professor, Royal Marsden Hospital, Department of Physics Sutton, UK
2004	European Society for Therapeutic Radiology and Oncology (ESTRO), Annual meeting Amsterdam, The Netherlands
2005	IMRT and Other Conformal Techniques in Practice, course of the European Society of Therapeutic Radiology and Oncology (ESTRO) Amsterdam, The Netherlands
2005	Visiting Professor, Fraunhofer Institute of Mathematics, Department of Optimization Kaiserslautern, Germany
2005	Symposium 60 th Birthday of Wolfgang Schlegel Heidelberg, Germany
2006	International Conference on Translational Research Lugano, Switzerland
2006	PTCOG satellite workshop on Intensity-Modulated Proton Therapy Zürich, Switzerland
2006	IMRT and Other Conformal Techniques in Practice, course of the European Society of Therapeutic Radiology and Oncology (ESTRO) Copenhagen, Denmark
2006	European Society for Therapeutic Radiology and Oncology (ESTRO), Annual meeting Leipzig, Germany
2006	IMRT and Other Conformal Techniques in Practice, course of the European Society of Therapeutic Radiology and Oncology (ESTRO) Gliwice, Poland
2007	Monte Carlo: 3rd McGill international workshop Montreal, Canada
2007	European Society for Therapeutic Radiology and Oncology (ESTRO), Bi-annual physics meeting Barcelona, Spain
2007	European Cancer Conference (ECCO) Barcelona, Spain
2008	ESTRO workshop on Physics in Radiation Oncology – future perspectives Nyon, Switzerland
2008	Haddow Fellowship (3 week visit), Royal Marsden Hospital, Institute of Cancer Research, Department of Physics Sutton, UK
2008	Symposium 60th Birthday of Steve Webb Sutton, UK
2009	SGSMP, Swiss Society of Medical Physics Basel, Switzerland

2009	World Congress Medical Physics and Biomedical Engineering Munich, Germany
2010	DGMP, German Society of Medical Physics Freiburg, Germany
2010-2015 6 years	Graduate teaching at Heidelberg University in Germany: Master Online – Optimization and inverse planning, 2x2 hours per year Online course
2011	ESTRO bi-annual physics conference London, UK
2011	SIAM conference on optimization Darmstadt, Germany
2011	New developments in the planning and delivery of radiation therapy in the new millennium; 5 day teaching workshop, 22 lectures, shared with Dr. Hsiao-Ming Lu Hong Kong, China
2011	AAPM annual meting Vancouver, Canada
2012	ICTR conference Geneva, Switzerland
2012	ESTRO conference Barcelona, Spain
2013	3rd International Conference on Real-time Tumor-Tracking Radiation Therapy with 4D Molecular Imaging Technique (keynote lecture) Sapporo, Japan
2013	ESTRO conference Geneva, Switzerland
2013	Symposium for Anders Brahme: The roadmap to advanced radiation therapy Stockholm, Sweden
2013	Symposium in honor of Michael Molls, MD Munich, Germany
2013	PTCOG conference (Keynote lecture) Essen, Germany
2014	ESTRO annual conference Vienna, Austria
2014	Workshop on Range Assessment and Dose Verification in Particle Therapy Dresden, Germany
2014	Proton Therapy Symposium Uppsala, Sweden
2015	Science Day, Dalhousie University Halifax, Canada
2015	ESTRO annual conference Barcelona, Spain

2015	Turkish Society of Medical Physics, annual conference Trabzon, Turkey
2015	DEGRO annual conference (keynote lecture) Hamburg, Germany
2015	Doppler workshop, MRI Vienna, Austria
2015	Langendorff Symposium Freiburg, Germany
2016	ICTR-PHE Geneva, Switzerland
2016	ICCR London, England
2016	Expert workshop: Radiobiology of proton therapy Dresden, Germany
2017	ESTRO annual conference Vienna, Austria
2018	AAPM ISEP Ljubljana, Slovenia
2018	CARO-COMP-CMRT (keynote lecture) Montreal, Canada
2019	Langendorff Symposium Freiburg, Germany
2019	Farewell symposium Wolfgang Schlegel Heidelberg, Germany
2019	3 rd ESTRO physics workshop Budapest, Hungary
2019	Engineering and Physical Sciences in Medicine Conference (keynote) Perth, Australia
2019	Public Lecture, University of Western Australia Perth, Australia
2019	SGSMP, Swiss Society of Radiobiology and Medical Physics (keynote) Zürich, Switzerland
2020	Clinical target volume definition - from Art to Science Centre Léon Bérard Lyon, France
2020	Definition des klinischen Zielvolumens – Kunst und Wissenschaft Department of Radiation Oncology Freiburg, Germany
2020	Analytics in the fight against cancer Analytics for a better world webinar virtual

2020	Curing Cancer as a Medical Physicist MSc program in Medical Physics at the Polytechnic University Hong Kong (virtual)
2020	Quo Vadis, Medizinische Physik? Perspektive 2030 German Society for Medical Physics Leipzig, Germany (virtual)
2020	Advancing Cancer Medicine in Hospitals and Research Centers - a Personal Perspective Ljubljana, Slovenia (virtual)
2020	Target delineation decisions in interactive treatment planning ESTRO annual meeting Vienna, Austria (virtual)
2020	Transforming CTV definition from art to science ESTRO annual meeting Vienna, Austria (virtual)
2020	The target of radiation therapy MICCAI conference Lima, Peru (virtual)
2021	Proton therapy in standard treatment rooms (Keynote) Annual meeting of the Chinese Society for Medical Physics Wuhan, China (virtual)
2021	Democratizing proton therapy Raptor school Ljubljana, Slovenia (virtual)
2021	Wishlist for future CT development ESTRO physics workshop (virtual)
2021	Treatment plan optimization Munich graduate program in Medical Physics (virtual)
2022	From IMRT to innovative proton therapy Centenary of Radiation Oncology in Dresden (virtual)
2022	In 10 years particle therapy will be in a better place than now Debate at ESTRO annual conference Copenhagen, Denmark
2022	Physik und Mathematik im Kampf gegen den Krebs – Photonen, Protonen, Schwerionen (Physics and Math in the Fight Against Cancer) Leopoldina, German National Academy of Sciences Halle, Germany
2022	Democratizing proton therapy Louvain-la-Neuve, Radiation Oncology Louvain-la-Neuve University campus, Belgium

Report of Clinical Activities and Innovations

Current Licensure and Certification:

1998	Fachkunde im Strahlenschutz (certification in radiation protection for the use of
	accelerators in medicine, as required by the German legislation)
1998	Certified Medical Physicist (German Society of Medical Physics, DGMP)

Clinical Innovations:

Inverse treatment planning optimization	As part of my PhD dissertation project in 1988-1990, I developed a fast inverse planning algorithm for intensity-modulated radiation therapy (IMRT). Initially a 2D algorithm, it was generalized to 3D and a more accurate dose calculation algorithm was integrated while I was a postdoctoral fellow in Heidelberg in 1991-1992. A modified version of this Opt3D algorithm was clinically deployed for the first IMRT treatment with multileaf collimators at the Sloan Kettering Cancer Center (MSKCC) in 1995.
IMRT with multileaf collimators (MLC)	In 1992-1993, as a postdoctoral fellow at the MD Anderson Cancer Center (MDACC), I developed a method and algorithm for the generation of intensity- modulated fields using a general purpose MLC. We first deployed this method for phantom treatments at MDACC. Later it was also used for the first patient treatment at MSKCC, and became the standard of IMRT delivery worldwide.
Interactive inverse planning	Together with my former student Konrad Preiser, we developed a graphical user interface for Opt3D and focused on its capability to shape 3D dose distributions interactively. The resulting system was called KonRad. It was first deployed for a clinical treatment in Heidelberg in 1997 and was integrated into several commercial treatment planning systems.
Dose volume histogram constraint points in treatment planning	I developed methods to integrate dose-volume constraints in the optimized planning process. With Konrad Preiser we included these constraints as user adjustable parameters in the interactive KonRad user interface. This concept has subsequently been adopted by all treatment planning systems. In combination with the developments above, it formed the basis of modern IMRT, which has since become the state-of-the-art of radiation treatment delivery with over 30 million patients treated as of 2021.
Multi-criteria optimization (MCO)	While KonRad treatment planning is by design fully interactive, it requires trial- and-error to find the input parameter settings that yield the desired treatment plan. With colleagues from Fraunhofer ITWM, we developed MCO methods for treatment planning that let the planner find the most suitable clinical treatment plan directly, by controlling the output rather than the input parameters. We integrated MCO in a commercial planning system in collaboration with RaySearch and deployed it in our clinic at MGH. The MCO approach and the related Pareto concept have been adopted widely in our field.

Report of Technological and Other Scientific Innovations

Optimized treatment planning	Mathematical formulation of the inverse treatment planning problem as a constrained optimization problem (today known as the fluence map optimization problem). Solution via quasi-Newton methods with diagonal approximation of the Hessian matrix. Constraint handling via penalty functions (Bortfeld et al., Phys Med Biol 1990;35:1423-1434). The choice of these methods was based on the insight that the objective function and constraints are convex, and it is therefore unnecessary to resort to stochastic methods such as simulated annealing.
Delivery of intensity- modulated radiation therapy (IMRT) with multileaf collimators (MLC)	Analytical calculation of the MLC "sweep" motion trajectory that creates a desired intensity map, both in the dynamic mode (Stein et al., Radiother Oncol 1994;32:163-173) and the step and shoot mode (Bortfeld et al., Int J Radiat Oncol Biol Phys 1994;28:723-730). Together with the optimized inverse planning method above, this combined approach has been adopted in many other systems and formed the basis of modern IMRT delivery.
Fast dose calculation	Fast 3D kernel-based dose calculation by kernel decomposition into lateral and depth components (Bortfeld et al., Med Phys 1993;20:311-318), inspired by the singular-value decomposition of a matrix. This method has facilitated <i>interactive</i> inverse planning with iterative dose calculations on computer hardware of the time. The method is still in use today in commercial treatment planning systems.
Dose-volume histogram (DVH) constraints in inverse planning	Handling of non-convex DVH constraints by fast projection methods (Bortfeld et al., ICCR 1997:1-4). Interactive adjustment of the DVH constraints in the user interface (Preiser et al., ICCR 1997:425-428). This method has subsequently been adopted and implemented in all treatment planning systems; it is still in use today.
Multi-criteria optimization (MCO)	Introduction of the concept of Pareto efficiency in IMRT treatment planning, together with Karl-Heinz Küfer and colleagues from Fraunhofer ITWM, and David Craft at MGH. Development of tools to interactively "navigate" the Pareto frontier, to find the most suitable tradeoff between target coverage and sparing of normal tissues. Concept broadly adopted and implemented in several planning systems today.
Fast multi- dimensional Hartley transform	Convolutions of real-valued functions are efficiently done in the frequency domain using Hartley transforms, without having to deal with the imaginary part of the Fourier transform. I developed an algorithm to calculate the multi- dimensional Hartley transform using one-dimensional fast Fourier transforms (Bortfeld and Dinter, IEEE Trans Signal Process 1995;43:1306-1310).
Analytical model of the Bragg peak	Approximation of the proton Bragg peak by parabolic cylinder functions (Bortfeld, Med Phys 1997;24:2024-2033). This "Bortfeld model" has been used widely from rapid prototyping to clinical treatment planning.
Robust optimization	Development of robust optimization techniques to deal with uncertainties in planning and delivery of both photon (Chan TCY et al., Phys Med Biol 2006;51:2567-2583) and especially proton therapy (Unkelbach et al., Phys Med Biol 2007;52(10):2755-2773). Robust optimization is a better alternative to the use of planning margins and is becoming available in several commercial planning systems.
Reduction of proton range uncertainties	I put the proton range uncertainty problem on the map in our field. I worked with Katia Parodi on PET-based range verification (Parodi et al., Int J Radiat

	Oncol Biol Phys 2007;68(3):920-934). One of the most promising approaches to reduce range uncertainties uses prompt gamma spectroscopy, developed by my former PhD student and now faculty member Joost Verburg (Verburg et al., Phys Med Biol 2013;58(20):L37-49).
Definition of the clinical target volume (CTV)	CTV definition is one of the weakest links in the radiotherapy chain. I am working on strengthening the link through user-guided automated CTV definition, with first demonstrated results in glioma (Shusharina et al., Radiother Oncol 2020;146:37-43).
Democratization of proton therapy	Proton therapy has been denounced as a breathtakingly expensive luxury treatment. My team and I are working toward democratizing proton therapy by making it affordable and available for every patient who is expected to benefit from it. We have recently been the first in the world to retrofit proton therapy in two neighboring treatment rooms that were designed for conventional radiation therapy (Bortfeld and Loeffler, Nature 2017;549:451-453.). A separate building was not needed, which substantially lowered the cost. The next step will be to shrink the size of proton machines further so that they can replace conventional linear accelerators in single conventional treatment rooms. This development will be facilitated by moving the patient around a fixed beam using soft robotics (Buchner, Yan, et al., BioRob 2020;981-988).
Patents granted:	
Treatment plan optimization based on equivalent uniform dose (EUD) criteria	Bortfeld T, Thieke C, Niemierko A. Arrangements and methods for treating a subject. U.S. patent 6728336, 2004
Efficient sampling of the Pareto frontier for multicriteria optimization	Craft D, Bortfeld T. System and method for radiation dose control. U.S. patent 8489366, 2013.
Optimization of non- coplanar 4π treatment delivery	Papp D, Unkelbach J, Bortfeld T, Bal M. Volumetric Modulated Arc Therapy (VMAT) with Non-Coplanar Trajectories. U.S. patent 10549115, 2020.
Proton therapy in standard treatment rooms	Bortfeld T, Flanz J, Lu H-M, Yan S. System and method for gantry-less particle therapy. U.S. patent 10880983, 2020.

Report of Education of Patients and Service to the Community

No presentations below were sponsored by 3rd parties/outside entities
Those presentations below sponsored by outside entities are so noted and the sponsor(s) is (are) identified.

Activities

2019 "Physics in the fight against cancer", Public Lecture, University of Western Australia Perth, Australia

Report of Scholarship

ORCID iD: 0000-0002-3883-0398

Peer-Reviewed Scholarship in print or other media:

Research Investigations

- 1. **Bortfeld T**, Bürkelbach J, Boesecke R, Schlegel W. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol. 1990;35:1423-34.
- 2. Schlegel W, Pastyr O, **Bortfeld T**, Becker G, Schad L, Gademann G, Lorenz WJ. Computer systems and mechanical tools for stereotactically guided conformation therapy with linear accelerators. Int J Radiat Oncol Biol Phys. 1992;24:781-7.
- 3. **Bortfeld T**, Schlegel W, Rhein B. Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning. Med Phys. 1993;20:311-8.
- 4. **Bortfeld T**, Schlegel W. Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys Med Biol. 1993;38:291-304.
- 5. Gademann G, Schlegel W, Debus J, Schad L, **Bortfeld T**, Höver KH, Lorenz WJ, Wannenmacher M. Fractionated stereotactically guided radiotherapy of head and neck tumors: a report on clinical use of a new system in 195 cases. Radiother Oncol. 1993;29:205-13.
- 6. Schlegel W, Pastyr O, **Bortfeld T**, Gademann G, Menke M, Maier Borst W. Stereotactically guided fractionated radiotherapy: technical aspects. Radiother Oncol. 1993;29:197-204.
- Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ. Realization and Verification of 3-Dimensional Conformal Radiotherapy with Modulated Fields. Int J Radiat Oncol Biol Phys. 1994;30:899-908.
- 8. **Bortfeld T**, Schlegel W, Stein J, Preiser K. Intensitätsmodulation und inverse Planung: von der Theorie zum Phantomexperiment [Tagungsbericht]. Z Med Phys. 1994;4:105-6.
- 9. Bortfeld T, Kahler DL, Waldron TJ, Boyer AL. X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys. 1994;28:723-30.
- Gardey KU, Bortfeld T, Schlegel W, Rhein B. Einfluss von N\u00e4herungen auf die schnelle 3-D Dosisberechnung irregul\u00e4rer Felder in der stereotaktischen Konvergenzbestrahlung. Z Med Phys. 1994;4:84-9.
- 11. Mohan R, Wang XH, Jackson A, **Bortfeld T**, Boyer AL, Kutcher GJ, Leibel SA, Fuks Z, Ling CC. The potential and limitations of the inverse radiotherapy technique. Radiother Oncol. 1994;32:232-48.
- 12. Stein J, **Bortfeld T**, Doerschel B, Schlegel W. Dynamic x-ray compensation for conformal radiotherapy by means of multi-leaf collimation. Radiother Oncol. 1994;32:163-73.
- 13. **Bortfeld T**, Boyer AL. The Exponential Radon Transform and Projection Filtering in Radiotherapy Planning. Int J Imag Syst Techn. 1995;6:62-70.
- 14. **Bortfeld T**, Dinter W. Calculation of Multidimensional Hartley Transforms Using One-Dimensional Fourier-Transforms. IEEE Trans Signal Process. 1995;43:1306-10.
- 15. Chen Z, Wang XH, **Bortfeld T**, Mohan R, Reinstein LE. The influence of scatter on the design of optimized intensity modulations. Med Phys. 1995;22:1727-33.

- 16. **Bortfeld T**, Schlegel W. An Analytical Approximation of Depth-Dose Distributions for Therapeutic Proton-Beams. Phys Med Biol. 1996;41:1331-9.
- 17. Dykstra C, **Bortfeld T**, Debus J, Lomax A, Harrop R, Schlegel W, Munkel G. Characterization of dose distribution in radiation therapy plans. Radiother Oncol. 1996;41:281-4.
- Ling CC, Burman C, Chui CS, Kutcher GJ, Leibel SA, LoSasso T, Mohan R, Bortfeld T, Reinstein LE, Spirou S, Wang XH, Wu Q, Zelefsky M, Fuks Z. Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys. 1996;35:721-30.
- 19. **Bortfeld T**. An Analytical Approximation of the Bragg Curve for Therapeutic Proton Beams. Med Phys. 1997;24:2024-33.
- 20. Debus J, Engenhart-Cabillic R, Holz FG, Pastyr O, Rhein B, **Bortfeld T**. Stereotactic precision radiotherapy in the treatment of intraocular malignancies with a micro-multileaf collimator. Frontiers in Radiation Therapy and Oncology. 1997;30:39-46.
- Ésik O, Bortfeld T, Bendl R, Németh G, Schlegel W. Inverse Radiotherapy Planning for a Concave-Convex PTV in Cervical and Upper Mediastinal Regions. Strahlenther Onkol. 1997;173:193-200.
- 22. Gardey KU, **Bortfeld T**, Schlegel W, Rhein B. A Fast Algorithm for the Dose Calculation of Irregularly Shaped Fields in Stereotactic Convergent Beam Irradiation. Phys Med Biol. 1997;42:717-24.
- 23. Miralbell R, Lomax A, **Bortfeld T**, Rouzaud M, Carrie C. Potential Role of Proton Therapy in the Treatment of Medulloblastoma / Primitive Neuro-Ectodermal Tumors: Reduction of the Supratentorial Target Volume. Int J Radiat Oncol Biol Phys. 1997;38:477-84.
- 24. Stein J, Mohan R, Wang XH, **Bortfeld T**, Wu Q, Preiser K, Ling CC, Schlegel W. Number and Orientations of Beams in Intensity-Modulated Radiation Treatments. Med Phys. 1997;24:149-60.
- 25. Webb S, **Bortfeld T**, Stein J, Convery D. The effect of stair-step leaf transmission on the 'tongueand-groove problem' in dynamic radiotherapy with a multileaf collimator. Phys Med Biol. 1997;42:595-602.
- Debus J, Fuss M, Engenhart-Cabillic R, Holz F, Pastyr O, Rhein B, Bortfeld T, Wannenmacher M. Stereotaktische konformierende Bestrahlung von Aderhautmetastasen. Der Ophtalmologe. 1998;95:163-57.
- 27. Preiser K, **Bortfeld T**, Hartwig K, Schlegel W, Stein J. Inverse Strahlentherapieplanung für intensitätsmodulierte Photonenfelder. Radiologe. 1998;38:228-34.
- 28. **Bortfeld T**, Oelfke U. Fast and exact 2D image reconstruction by means of Chebyshev decomposition and backprojection. Phys Med Biol. 1999;44:1105-20.
- 29. **Bortfeld T**. Optimized planning using physical objectives and constraints. Seminars in Radiation Oncology. 1999;9:20-34.
- 30. Keller-Reichenbecher M-A, **Bortfeld T**, Levegrün S, Stein J, Preiser K, Schlegel W. Intensity modulation with the "step and shoot" technique using a commercial mlc: planning study. Int J Radiat Oncol Biol Phys. 1999;45:1315-24.
- 31. Lomax AJ, **Bortfeld T**, Goitein G, Debus J, Dykstra C, Tercier P, Coucke PA, Mirimanoff RO. A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy. Radiother Oncol. 1999;51:257-71.

- 32. Oelfke U, **Bortfeld T**. Inverse planning for x-ray rotation therapy: a general solution of the Inverse Problem. Phys Med Biol. 1999;44:1089-104.
- 33. **Bortfeld T**, Oelfke U, Nill S. What is the optimum leaf width of a multileaf collimator? Med Phys. 2000;27:2494-502.
- 34. Oelfke U, **Bortfeld T**. Intensity modulated radiotherapy with charged particle beams: Studies of inverse treatment planning for rotation therapy. Med Phys. 2000;27:1246-57.
- 35. Schneider W, **Bortfeld T**, Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol. 2000;45:459-78.
- 36. Spies L, Evans PM, Partridge M, Hansen VN, **Bortfeld T**. Direct measurement and analytical modeling of scatter in portal imaging. Med Phys. 2000;27:462-71.
- 37. Zurlo A, Lomax A, Höss A, **Bortfeld T**, Russo M, Goitein G, Valentini V, Marucci L, Capparella R, Loasses A. The role of proton therapy in the treatment of large irradiation volumes: a comparative planning study of pancreatic and biliary tumors. Int J Radiat Oncol Biol Phys. 2000;48:277-288.
- 38. Spies L, Ebert M, Groh BA, Hesse BM, **Bortfeld T**. Correction of scatter in megavoltage cone beam CT. Phys Med Biol. 2001;46:821-834.
- 39. Oelfke U, **Bortfeld T**. Inverse Planning for photon- and proton beams. Medical Dosimetry. 2001;26:113-124.
- 40. Spies L, **Bortfeld T**. Analytical scatter kernels for portal imaging at 6 MV. Med Phys. 2001; 28:553-559.
- 41. Spies L, Partridge M, Groh BA, **Bortfeld T**. An iterative algorithm for reconstructing incident beam distributions from transmission measurements using electronic portal imaging. Phys Med Biol. 2001; 46:N203-N211.
- 42. Wesarg S, Ebert M, Bortfeld T. Parker weights revisited. Med Phys. 2002;29:372-378.
- 43. Thieke C, **Bortfeld T**, Kufer K-H. Characterization of dose distributions through the max and mean dose concept. Acta Oncologica. 2002;41:158-161.
- 44. Thieke C, Nill S, Oelfke U, **Bortfeld T**. Acceleration of IMRT dose calculation by importance sampling of the calculation matrices. Med Phys. 2002;29:676-681.
- 45. **Bortfeld T**, van Herk M, Jiang SB. When should systematic patient positioning errors in radiotherapy be corrected? Phys Med Biol. 2002;47:N297-N302.
- 46. **Bortfeld T**, Jokivarsi K, Goitein M, Kung J, Jiang SB. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol. 2002;47:2203-2220.
- 47. Münter MW, Debus J, Hof H, Nill S, Häring P, **Bortfeld T**, Wannenmacher M. Inverse treatment planning and stereotactic intensity-modulated radiation therapy (IMRT) of the tumor and lymph node levels for nasopharyngeal carcinomas. Description of treatment technique, plan comparison, and case study. Strahlenther Onkol. 2002;178:517-523.
- 48. Claus F, Mijnheer B, Rasch C, **Bortfeld T**, Fraass B, De Gersem W, Wirtz H, Hoinkis C, Cho BC, Kwong LW, et al. Report of a study on IMRT planning strategies for ethmoid sinus cancer. Strahlenther Onkol. 2002;178:572-576.
- 49. Trofimov A, **Bortfeld T**. Beam delivery sequencing for intensity modulated proton therapy. Phys Med Biol. 2003;48:1321-1331.

- 50. Trofimov A, **Bortfeld T**. Optimization of beam parameters and treatment planning for intensity modulated proton therapy. Technol Cancer Res Treat. 2003;2:437-444.
- 51. Thieke C, **Bortfeld T**, Niemierko A, Nill S. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning. Med Phys. 2003;30:2332-2339.
- 52. Suit H, Goldberg S, Niemierko A, Trofimov A, Adams J, Paganetti H, Chen GT, **Bortfeld T**, Rosenthal S, Loeffler J, et al. Proton beams to replace photon beams in radical dose treatments. Acta Oncologica. 2003; 42:800-808.
- 53. Scholz C, Schulze C, Oelfke U, **Bortfeld T**. Development and clinical application of a fast superposition algorithm in radiation therapy. Radiother Oncol. 2003;69:79-90.
- 54. Oelfke U, **Bortfeld T**. Optimization of Physical Dose Distributions with Hadron Beams: Comparing Photon IMRT with IMPT. Technol Cancer Res Treat. 2003; 2:401-412.
- 55. Llacer J, Deasy JO, **Bortfeld T**, Solberg TD, Promberger C. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Phys Med Biol. 2003; 48:183-210.
- 56. Küfer K-H, Scherrer A, Monz M, Alonso F, Trinkaus H, **Bortfeld T**, Thieke C. Intensitymodulated radiotherapy – a large scale multi-criteria programming problem. OR Spectrum. 2003; 25:223–249.
- 57. Kooy HM, Schaefer M, Rosenthal S, **Bortfeld T**. Monitor unit calculations for range-modulated spread-out Bragg peak fields. Phys Med Biol. 2003; 48:2797-2808.
- Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GT. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol. 2003; 48:1773-1784.
- 59. Weber DC, Trofimov AV, Delaney TF, **Bortfeld T**. A treatment planning comparison of intensity modulated photon and proton therapy for paraspinal sarcomas. Int J Radiat Oncol Biol Phys. 2004; 58:1596-1606.
- 60. Pavel-Mititean LM, Rowbottom CG, Hector CL, Partridge M, **Bortfeld T**, Schlegel W. A geometric model for evaluating the effects of inter-fraction rectal motion during prostate radiotherapy. Phys Med Biol. 2004; 49:2613-29.
- 61. Nill S, **Bortfeld T**, Oelfke U. Inverse planning of intensity modulated proton therapy. Z Med Phys. 2004; 14:35-40.
- 62. **Bortfeld T**. Very high energy electromagnetically-scanned electron beams are an attractive alternative to photon IMRT. Against the proposition. Med Phys. 2004; 31:1946-1948.
- 63. **Bortfeld T**, Jiang SB, Rietzel E. Effects of motion on the total dose distribution. Semin Radiat Oncol. 2004; 14:41-51.
- 64. Engelsman M, Sharp GC, **Bortfeld T**, Onimaru R, Shirato H. How much margin reduction is possible through gating or breath hold? Phys Med Biol. 2005; 50(3):477-490.
- 65. Scherrer A, Kuefer K-H, Monz M, Alonso F, **Bortfeld T**. IMRT planning on adaptive volume structures a decisive reduction in computational complexity. Phys Med Biol. 2005; 50:2033-2053.
- Trofimov A, Rietzel E, Lu H-M, Martin B, Jiang SB, Chen GTY, Bortfeld T. Temporo-spatial IMRT optimization: concepts, implementation and initial results. Phys Med Biol. 2005; 50:2779-2798.

- 67. Craft D, Halabi T, **Bortfeld T**. Exploration of tradeoffs in intensity-modulated radiotherapy. Phys Med Biol. 2005; 50:5857-5868.
- 68. Nioutsikou E, Webb S, Panakis N, **Bortfeld T**, Oelfke U. Reconsidering the definition of a dosevolume histogram. Phys Med Biol. 2005; 50:L17-L19.
- 69. Censor Y, Elfving T, Kopf N, **Bortfeld T**. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems 2005; 21:2071-2084.
- 70. Chan TCY, **Bortfeld T**, Tsitsiklis, JN. A robust approach to IMRT optimization. Phys Med Biol. 2006; 51:2567-2583.
- 71. Jiang SB, Sharp GC, Neicu T, Berbeco RI, Flampouri S, **Bortfeld T**. On dose distribution comparison. Phys Med Biol. 2006; 51:759-776.
- 72. Parodi K, **Bortfeld T**. A filtering approach based on Gaussian–powerlaw convolutions for local PET verification of proton radiotherapy. Phys Med Biol. 2006; 51:1991-2009.
- 73. Censor Y, **Bortfeld**, **T**, Martin B, Trofimov A. A unified approach for inversion problems in intensity-modulated radiation therapy. Phys Med Biol. 2006; 51:2353-2365.
- 74. Bortfeld T. IMRT: a review and preview. Phys Med Biol. 2006; 51:R363-R379.
- 75. **Bortfeld T**, Paganetti H. The biologic relevance of daily dose variations in adaptive treatment planning. Int J Radiat Oncol Biol Phys. 2006; 65:899-906.
- 76. Halabi T, Craft D, **Bortfeld T**. Dose-volume objectives in multi-criteria optimization. Phys Med Biol. 2006; 51:3809-3818.
- 77. Craft D, Halabi T Shih H, **Bortfeld T**. Approximating convex Pareto surfaces in multi-objective radiotherapy planning. Med Phys. 2006; 33:3399-3407.
- 78. Parodi K, Paganetti H, Shih HA, Michaud S, Loeffler JS, DeLaney TF, Liebsch NJ, Munzenrider JE, Fischman AJ, Knopf A, **Bortfeld T**. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Int J Radiat Oncol Biol Phys. 2007; 68(3):920-34.
- 79. Trofimov A, Nguyen PL, Coen JJ, Doppke KP, Schneider RJ, Adams JA, **Bortfeld TR**, Zietman AL, Delaney TF, Shipley WU. Radiotherapy treatment of early-stage prostate cancer with IMRT and protons: a treatment planning comparison. Int J Radiat Oncol Biol Phys. 2007; 69(2):444-53.
- 80. Unkelbach J, Chan TC, **Bortfeld T**. Accounting for range uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol. 2007; 52(10):2755-73.
- 81. Seco J, Sharp GC, Turcotte J, Gierga D, Bortfeld T, Paganetti H. Effects of organ motion on IMRT treatments with segments of few monitor units. Med Phys. 2007; 34(3):923-34.
- Craft D, Süss P, Bortfeld T. The tradeoff between treatment plan quality and required number of monitor units in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007; 67(5):1596-605.
- Parodi K, Paganetti H, Cascio E, Flanz JB, Bonab AA, Alpert NM, Lohmann K, Bortfeld T. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants. Med Phys. 2007; 34(2):419-35.
- 84. Craft D, Halabi T, Shih HA, **Bortfeld T**. An Approach for Practical Multiobjective IMRT Treatment Planning. Int J Radiat Oncol Biol Phys. 2007; 69(5):1600-7.

- 85. Thieke C, Küfer KH, Monz M, Scherrer A, Alonso F, Oelfke U, Huber PE, Debus J, **Bortfeld T**. A new concept for interactive radiotherapy planning with multicriteria optimization: First clinical evaluation. Radiother Oncol. 2007; 85(2):292-8.
- 86. Martin BC, **Bortfeld TR**, Castañon DA. Accelerating IMRT optimization by voxel sampling. Phys Med Biol. 2007; 52(24):7211-28.
- 87. Monz M, Küfer KH, **Bortfeld TR**, Thieke C. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol. 2008; 53(4):985-98.
- 88. MacDonald SM, Safai S, Trofimov A, Wolfgang J, Fullerton B, Yeap BY, **Bortfeld T**, Tarbell NJ, Yock T. Proton radiotherapy for childhood ependymoma: initial clinical outcomes and dose comparisons. Int J Radiat Oncol Biol Phys. 2008; 71(4):979-86.
- 89. **Bortfeld T**, Craft D, Dempsey JF, Halabi T, Romeijn HE. Evaluating target cold spots by the use of tail EUDs. Int J Radiat Oncol Biol Phys. 2008; 71(3):880-9.
- 90. Safai S, **Bortfeld T**, Engelsman M. Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy. Phys Med Biol. 2008; 53(6):1729-50.
- 91. Craft D, **Bortfeld T**. How many plans are needed in an IMRT multi-objective plan database? Phys Med Biol. 2008; 53(11):2785-96.
- 92. Parodi K, **Bortfeld T**, Haberer T. Comparison between in-beam and offline positron emission tomography imaging of proton and carbon ion therapeutic irradiation at synchrotron- and cyclotron-based facilities. Int J Radiat Oncol Biol Phys. 2008; 71(3):945-56.
- 93. Trofimov A, Vrancic C, Chan TC, Sharp GC, **Bortfeld T**. Tumor trailing strategy for intensitymodulated radiation therapy of moving targets. Med Phys. 2008; 35(5):1718-33.
- 94. Knopf A, Parodi K, Paganetti H, Cascio E, Bonab A, **Bortfeld T**. Quantitative assessment of the physical potential of proton beam range verification with PET/CT. Phys Med Biol. 2008; 53(15):4137-51.
- 95. Webb S, **Bortfeld T**. A new way of adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion. Phys Med Biol. 2008; 53(18):5177-91.
- 96. Hong TS, Craft DL, Carlsson F, **Bortfeld TR**. Multicriteria optimization in intensity-modulated radiation therapy treatment planning for locally advanced cancer of the pancreatic head. Int J Radiat Oncol Biol Phys. 2008; 72(4):1208-14.
- 97. Orton CG, **Bortfeld TR**, Niemierko A, Unkelbach J. The role of medical physicists and the AAPM in the development of treatment planning and optimization. Med Phys. 2008; 35(11):4911-23.
- 98. **Bortfeld T**, Chan TCY, Trofimov A, Tsitsiklis JN. Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy. Operations Research 2008; 56(6):1461-1473.
- 99. Bortfeld T, Webb S. Single-Arc IMRT? Phys Med Biol. 2009; 54(1):N9-20
- 100. Unkelbach J, **Bortfeld T**, Martin BC, Soukup M. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys. 2009; 36(1):149-63.
- 101. Vrancić C, Trofimov A, Chan TC, Sharp GC, **Bortfeld T**. Experimental evaluation of a robust optimization method for IMRT of moving targets. Phys Med Biol. 2009; 54(9):2901-14.
- 102. Nohadani O, Seco J, Martin BC, **Bortfeld T**. Dosimetry robustness with stochastic optimization. Phys Med Biol. 2009; 54(11):3421-32.

- 103. Spalke T, Craft D, **Bortfeld T**. Analyzing the main trade-offs in multiobjective radiation therapy treatment planning databases. Phys Med Biol. 2009; 54(12):3741-54.
- Knopf A, Parodi K, Bortfeld T, Shih HA, Paganetti H. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans. Phys Med Biol. 2009; 54(14):4477-95.
- 105. **Bortfeld T**. The number of beams in IMRT--theoretical investigations and implications for single-arc IMRT. Phys Med Biol. 2010; 55(1):83-97.
- 106. Chan TC, Tsitsiklis JN, **Bortfeld T**. Optimal margin and edge-enhanced intensity maps in the presence of motion and uncertainty. Phys Med Biol. 2010; 55(2):515-33.
- 107. Gensheimer MF, Yock TI, Liebsch NJ, Sharp GC, Paganetti H, Madan N, Grant E, Bortfeld T. In vivo proton beam range verification using spine MRI changes. Int J Radiat Oncol Biol Phys 2010; 78(1):268-75.
- 108. Nohadani O, Seco J, **Bortfeld T**. Motion management with phase-adapted 4D-optimization. Phys Med Biol. 2010; 55(17):5189-202.
- 109. Knopf AC, Parodi K, Paganetti H, Bortfeld T, Daartz J, Engelsman M, Liebsch N, Shih H. Accuracy of Proton Beam Range Verification Using Post-Treatment Positron Emission Tomography/Computed Tomography as Function of Treatment Site. Int J Radiat Oncol Biol Phys. 2010; 79(1):297-304.
- 110. Espana S, Zhu X, Daartz J, El Fakhri G, **Bortfeld T**, Paganetti H. The reliability of protonnuclear interaction cross-section data to predict proton-induced PET images in proton therapy. Phys Med Biol. 2011; 56(9):2687-98.
- 111. Zhu X, Espana S, Daartz J, Liebsch N, Ouyang J, Paganetti H, Bortfeld TR, El Fakhri G. Monitoring proton radiation therapy with in-room PET imaging. Phys Med Biol. 2011; 56(13):4041-57.
- 112. Attanasi F, Knopf A, Parodi K, Paganetti H, **Bortfeld T**, Rosso V, Guerra AD. Extension and validation of an analytical model for in vivo PET verification of proton therapy-a phantom and clinical study. Phys Med Biol. 2011; 56(16):5079-5098.
- 113. McQuaid D, **Bortfeld T**. 4D planning over the full course of fractionation: assessment of the benefit of tumor trailing. Phys Med Biol. 2011;56(21):6935-49.
- 114. **Bortfeld T**, Jeraj R. Hounsfield review series: The physical basis and future of radiation therapy. Br J Radiol. 2011; 84(1002):485-98.
- 115. Remmele S, Hesser J, Paganetti H, **Bortfeld T**. A deconvolution approach for PET-based dose reconstruction in proton radiotherapy. Phys Med Biol. 2011;56(23):7601-19.
- 116. Craft DL, Hong TS, Shih HA, Bortfeld TR. Improved Planning Time and Plan Quality Through Multicriteria Optimization for Intensity-Modulated Radiotherapy. Int J Radiat Oncol Biol Phys. 2012; 82(1):e83-90.
- 117. Chen W, Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft D Including robustness in multi-criteria optimization for intensity-modulate proton therapy. Phys Med Biol. 2012;57(3):591-608.
- 118. Wolf R, **Bortfeld T**. An analytical solution to proton Bragg peak deflection in a magnetic field. Phys Med Biol. 2012; 57(17):N329-37.

- 119. Trofimov A, Unkelbach J, Delaney TF, **Bortfeld T**. Visualization of a variety of possible dosimetric outcomes in radiation therapy using dose-volume histogram bands. Pract Radiat Oncol. 2012; 2(3):164-171.
- 120. Ramakrishnan J, Craft D, **Bortfeld T**, Tsitsiklis JN. A dynamic programming approach to adaptive fractionation. Phys Med Biol. 2012; 57(5):1203-16.
- 121. Craft D, McQuaid D, Wala J, Chen W, Salari E, **Bortfeld T**. Multicriteria VMAT optimization. Med Phys. 2012; 39(2):686-96.
- 122. Unkelbach J, Craft D, Salari E, Ramakrishnan J, **Bortfeld T**. The dependence of optimal fractionation schemes on the spatial dose distribution. Phys Med Biol. 2013 Jan 7;58(1):159-67.
- 123. Yuan Y, Andronesi OC, **Bortfeld TR**, Richter C, Wolf R, Guimaraes AR, Hong TS, Seco J. Feasibility study of in vivo MRI based dosimetric verification of proton end-of-range for liver cancer patients. Radiother Oncol. 2013 Mar;106(3):378-82.
- 124. Flanz J, **Bortfeld T**. Evolution of technology to optimize the delivery of proton therapy: the third generation. Semin Radiat Oncol. 2013 Apr;23(2):142-8.
- 125. **Bortfeld T**, Marks LB. Hype cycle in radiation oncology. Int J Radiat Oncol Biol Phys. 2013 Aug 1;86(5):819-21.
- 126. Min CH, Zhu X, Winey BA, Grogg K, Testa M, El Fakhri G, **Bortfeld TR**, Paganetti H, Shih HA. Clinical application of in-room positron emission tomography for in vivo treatment monitoring in proton radiation therapy. Int J Radiat Oncol Biol Phys. 2013 May 1;86(1):183-9.
- 127. Safai S, Trofimov A, Adams JA, Engelsman M, **Bortfeld T**. The rationale for intensitymodulated proton therapy in geometrically challenging cases. Phys Med Biol. 2013 Sep 21;58(18):6337-53.
- 128. Verburg JM, Riley K, **Bortfeld T**, Seco J. Energy- and time-resolved detection of prompt gamma-rays for proton range verification. Phys Med Biol. 2013 Oct 21;58(20):L37-49.
- 129. Frey K, Bauer J, Unholtz D, Kurz C, Krämer M, **Bortfeld T**, Parodi K. TPSPET-A TPS-based approach for in vivo dose verification with PET in proton therapy. Phys Med Biol. 2014 Jan 6;59(1):1-21.
- 130. Richter C, Seco J, Hong TS, Duda DG, **Bortfeld T**. Radiation-induced changes in hepatocytespecific Gd-EOB-DTPA enhanced MRI: potential mechanism. Med Hypotheses. 2014 Oct;83(4):477-81.
- 131. Unkelbach J, Craft D, Hong T, Papp D, Ramakrishnan J, Salari E, Wolfgang J, Bortfeld T. Exploiting tumor shrinkage through temporal optimization of radiotherapy. Phys Med Biol. 2014 Jun 21;59(12):3059-79.
- 132. **Bortfeld T**, Ramakrishnan J, Tsitsiklis JN, Unkelbach J. Optimization of radiation therapy fractionation schedules in the presence of tumor repopulation. INFORMS Journal on Computing 27(4):788-803.
- 133. Ngwa W, Sajo E, Ngoma T, Bortfeld T, Gierga D, White KB, Akinwande B, Enwerem-Bromson MM, Teboh Forbang R, Winningham TA, Court LE, Odedina FT, Wu R, Makrigiorgos M, Nguyen PL. Potential for information and communication technologies to catalyze global collaborations in radiation oncology. Int J Radiat Oncol Biol Phys. 2015 Feb 1;91(2):444-7.
- 134. **Bortfeld T**, Torresin A, Fiorino C, Andreo P, Gagliardi G, Jeraj R, Muren LP, Paiusco M, Thwaites D, Knöös T. The research versus clinical service role of medical physics. Radiother Oncol. 2015 Mar;114(3):285-8.

- 135. Unkelbach J, **Bortfeld T**, Craft D, Alber M, Bangert M, Bokrantz R, Chen D, Li R, Xing L, Men C, Nill S, Papp D, Romeijn E, Salari E. Optimization approaches to volumetric modulated arc therapy planning. Med Phys. 2015 Mar;42(3):1367-77.
- 136. Grogg K, Alpert NM, Zhu X, Min CH, Testa M, Winey B, Normandin MD, Shih HA, Paganetti H, Bortfeld T, El Fakhri G. Mapping (15)O production rate for proton therapy verification. Int J Radiat Oncol Biol Phys. 2015 Jun 1;92(2):453-9.
- 137. Salari E, Unkelbach J, **Bortfeld T**. A mathematical programming approach to the fractionation problem in chemoradiotherapy. IIE Transactions on Healthcare Systems Engineering 5(2):55-73
- 138. Papp D, **Bortfeld T**, Unkelbach J. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories. Phys Med Biol. 2015 Jul 7;60(13):5179-98.
- 139. Yan S, Lu HM, Flanz J, Adams J, Trofimov A, Bortfeld T. Reassessment of the Necessity of the Proton Gantry: Analysis of Beam Orientations From 4332 Treatments at the Massachusetts General Hospital Proton Center Over the Past 10 Years. Int J Radiat Oncol Biol Phys. 2016 May 1; 95(1):224-33.
- 140. Kamran SC, Mueller BS, Paetzold P, Dunlap J, Niemierko A, Bortfeld T, Willers H, Craft D. Multi-criteria optimization achieves superior normal tissue sparing in a planning study of intensity-modulated radiation therapy for RTOG 1308-eligible non-small cell lung cancer patients. Radiother Oncol. 2016 Mar; 118(3):515-20.
- 141. Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016 Apr; 16(4):234-49.
- 142. Bian J, Sharp GC, Park YK, Ouyang J, Bortfeld T, El Fakhri G. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy. Phys Med Biol. 2016 May 7; 61(9):3317-46.
- 143. Gorissen BL, Unkelbach J, **Bortfeld TR**. Mathematical Optimization of Treatment Schedules. Int J Radiat Oncol Biol Phys. 2016 09 01; 96(1):6-8. PMID: 27511841.
- 144. Craft D, Khan F, Young M, **Bortfeld T**. The Price of Target Dose Uniformity. Int J Radiat Oncol Biol Phys. 2016 11 15; 96(4):913-914. PMID: 27788961.
- 145. Müller BS, Shih HA, Efstathiou JA, **Bortfeld T**, Craft D. Multicriteria plan optimization in the hands of physicians: a pilot study in prostate cancer and brain tumors. Radiat Oncol. 2017 Nov 06; 12(1):168. PMID: 29110689.
- 146. **Bortfeld TR**, Loeffler JS. Three ways to make proton therapy affordable. Nature. 2017 09 25; 549(7673):451-453. PMID: 28959981.
- 147. Apolle R, Rehm M, **Bortfeld T**, Baumann M, Troost EGC. The clinical target volume in lung, head-and-neck, and esophageal cancer: Lessons from pathological measurement and recurrence analysis. Clin Transl Radiat Oncol. 2017 Apr; 3:1-8. PMID: 29658006.
- 148. Perkó Z, **Bortfeld T**, Hong T, Wolfgang J, Unkelbach J. Derivation of mean dose tolerances for new fractionation schemes and treatment modalities. Phys Med Biol. 2018 Feb 05; 63(3):035038.
- 149. Langhans M, Unkelbach J, **Bortfeld T**, Craft D. Optimizing highly noncoplanar VMAT trajectories: the NoVo method. Phys Med Biol. 2018 Jan 16; 63(2):025023. PMID: 29336348.
- 150. Shusharina N, Liao Z, Mohan R, Liu A, Niemierko A, Choi N, Bortfeld T. Differences in lung injury after IMRT or proton therapy assessed by 18FDG PET imaging. Radiother Oncol. 2018 Jan 15. PMID: 29352608.

- 151. Shusharina N, Craft D, Chen YL, Shih H, Bortfeld T. The clinical target distribution: a probabilistic alternative to the clinical target volume. Phys Med Biol. 2018 Jul 24; 63(15):155001. PMID: 29952319.
- 152. Hueso-González F, Rabe M, Ruggieri T, **Bortfeld T**, Verburg JM. A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Phys Med Biol. 2018 Jul 23. PMID: 30033938.
- 153. Lühr A, von Neubeck C, Pawelke J, Seidlitz A, Peitzsch C, Bentzen SM, Bortfeld T, Debus J, Deutsch E, Langendijk JA, Loeffler JS, Mohan R, Scholz M, Sørensen BS, Weber DC, Baumann M, Krause M. "Radiobiology of Proton Therapy": Results of an international expert workshop. Radiother Oncol. 2018 07; 128(1):56-67. PMID: 29861141.
- 154. Grassberger C, Hong TS, Hato T, Yeap BY, Wo JY, Tracy M, Bortfeld T, Wolfgang JA, Eyler CE, Goyal L, Clark JW, Crane CH, Koay EJ, Cobbold M, DeLaney TF, Jain RK, Zhu AX, Duda DG. Differential Association Between Circulating Lymphocyte Populations With Outcome After Radiation Therapy in Subtypes of Liver Cancer. Int J Radiat Oncol Biol Phys. 2018 Aug 01; 101(5):1222-1225. PMID: 29859792.
- 155. Ajdari A, Niyazi M, Nicolay NH, Thieke C, Jeraj R, **Bortfeld T**. Towards optimal stopping in radiation therapy. Radiother Oncol. 2019 May; 134:96-100. PMID: 31005230.
- 156. Ten Eikelder SCM, den Hertog D, Bortfeld T, Perkó Z. Optimal combined proton-photon therapy schemes based on the standard BED model. Phys Med Biol. 2019 Mar 12; 64(6):065011. PMID: 30641502.
- 157. Richter C, Andronesi OC, Borra RJH, Voigt F, Löck S, Duda DG, Guimaraes AR, Hong TS, Bortfeld TR, Seco J. Inter-patient variations of radiation-induced normal-tissue changes in Gd-EOB-DTPA-enhanced hepatic MRI scans during fractionated proton therapy. Clin Transl Radiat Oncol. 2019 Sep; 18:113-119. PMID: 31341986.
- 158. Yu CX, Bortfeld T, Cai J. In the future, disruptive innovation in radiation oncology technology will be initiated mostly by entrepreneurs. Med Phys. 2019 May; 46(5):1949-1952. PMID: 30943312.
- 159. Hueso-González F, **Bortfeld T**. Compact Method for Proton Range Verification Based on Coaxial Prompt Gamma-Ray Monitoring: a Theoretical Study. IEEE Transactions on Radiation and Plasma Medical Sciences, DOI: 10.1109/TRPMS.2019.2930362.
- 160. Shusharina N, Söderberg J, Edmunds D, Löfman F, Shih H, Bortfeld T. Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume. Radiother Oncol. 2020 May; 146:37-43. PMID: 32114264.
- 161. Hoffmann A, Oborn B, Moteabbed M, Yan S, Bortfeld T, Knopf A, Fuchs H, Georg D, Seco J, Spadea MF, Jäkel O, Kurz C, Parodi K. MR-guided proton therapy: a review and a preview. Radiat Oncol. 2020 May 29; 15(1):129. PMID: 32471500.
- 162. **Bortfeld TR**, Viana MF, Yan S. The societal impact of ion beam therapy. Z Med Phys. 2020 Jul 14. PMID: 32680688.
- 163. Unkelbach J, Bortfeld T, Cardenas CE, Gregoire V, Hager W, Heijmen B, Jeraj R, Korreman SS, Ludwig R, Pouymayou B, Shusharina N, Söderberg J, Toma-Dasu I, Troost EGC, Vasquez Osorio E. The role of computational methods for automating and improving clinical target volume definition. Radiother Oncol. 2020 12; 153:15-25. PMID: 33039428.

- 164. Fiorino C, Jeraj R, Clark CH, Garibaldi C, Georg D, Muren L, van Elmpt W, Bortfeld T, Jornet N. Grand challenges for medical physics in radiation oncology. Radiother Oncol. 2020 12; 153:7-14. PMID: 33039425.
- 165. Ten Eikelder SCM, Ferjancic P, Ajdari A, Bortfeld T, den Hertog D, Jeraj R. Optimal treatment plan adaptation using mid-treatment imaging biomarkers. Phys Med Biol. 2020 12 22; 65(24):245011. PMID: 33053518.
- 166. Buchner T, Yan S, Li S, Flanz J, Hueso-González F, Kielty E, Bortfeld T, Rus D. A soft robotic device for patient immobilization in sitting and reclined positions for a compact proton therapy system. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). 2020; 981-988. doi: 10.1109/BioRob49111.2020.9224389.
- Bortfeld T, Shusharina N, Craft D. Probabilistic definition of the clinical target volumeimplications for tumor control probability modeling and optimization. Phys Med Biol. 2021 01 13; 66(1):01NT01. PMID: 33197905.
- 168. Shusharina N, Bortfeld T, Cardenas C, De B, Diao K, Hernandez S, Liu Y, Maroongroge S, Söderberg J, Soliman M. Cross-Modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization. Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data. 2021 Feb 23;12587:3–15. doi: 10.1007/978-3-030-71827-5 1. PMCID: PMC7972737.
- 169. Langhans M, Fechter T, Baltas D, Binder H, Bortfeld T. Automatic Segmentation of Brain Structures for Treatment Planning Optimization and Target Volume Definition. Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data. 2021 Feb 23;12587:40–8. doi: 10.1007/978-3-030-71827-5 5. PMCID: PMC7972750.
- 170. Ajdari A, Xie Y, Richter C, Niyazi M, Duda DG, Hong TS, **Bortfeld T**. Toward Personalized Radiation Therapy of Liver Metastasis: Importance of Serial Blood Biomarkers. JCO Clin Cancer Inform. 2021 Mar; 5:315-325. PMID: 33764817.
- Bortfeld T, Shusharina N, Craft D. Probabilistic definition of the clinical target volumeimplications for tumor control probability modeling and optimization. Phys Med Biol. 2021 01 13; 66(1):01NT01. PMID: 33197905.
- 172. Tattenberg S, Madden TM, Gorissen BL, **Bortfeld T**, Parodi K, Verburg J. Proton range uncertainty reduction benefits for skull base tumors in terms of normal tissue complication probability (NTCP) and healthy tissue doses. Med Phys. 2021 Jul 14. PMID: 34260085.
- 173. Shusharina N, Söderberg J, Lidberg D, Niyazi M, Shih HA, Bortfeld T. Accounting for uncertainties in the position of anatomical barriers used to define the clinical target volume. Phys Med Biol. 2021 Jul 22; 66(15). PMID: 34171846.
- 174. Xie Y, Kang K, Wang Y, Khandekar MJ, Willers H, Keane FK, Bortfeld TR. Automated clinical target volume delineation using deep 3D neural networks in radiation therapy of Non-small Cell Lung Cancer. Phys Imaging Radiat Oncol. 2021 Jul; 19:131-137. PMID: 34485718; PMCID: PMC8397906.
- 175. Moteabbed M, Smeets J, Hong TS, Janssens G, Labarbe R, Wolfgang JA, Bortfeld TR. Toward MR-integrated proton therapy: modeling the potential benefits for liver tumors. Phys Med Biol. 2021 09 23; 66(19). PMID: 34407528.
- 176. Ten Eikelder SCM, Ajdari A, Bortfeld T, den Hertog D. Conic formulation of fluence map optimization problems. Phys Med Biol. 2021 11 24; 66(22). PMID: 34587600.

- 177. Yan S, Depauw N, Adams J, Gorissen BL, Shih HA, Flanz J, Bortfeld T, Lu HM. Technical note: Does the greater power of pencil beam scanning reduce the need for a proton gantry? A study of head-and-neck and brain tumors. Med Phys. 2022 Feb; 49(2):813-824. PMID: 34919736.
- Manganaro L, Attili A, Bortfeld T, Paganetti H. Spatiotemporal optimisation of prostate intensity modulated proton therapy (IMPT) treatments. Phys Med Biol. 2022 02 10; 67(4). PMID: 35086079.
- 179. Chung C, Trofimov A, Adams J, Kung J, Kirsch DG, Yoon S, Doppke K, Bortfeld T, Delaney TF. Comparison of 3D Conformal Proton Therapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Photon Therapy for Retroperitoneal Sarcoma. Sarcoma. 2022; 2022:5540615. PMID: 35345672; PMCID: PMC8957461.
- 180. Tattenberg S, Madden TM, Bortfeld T, Parodi K, Verburg J. Range uncertainty reductions in proton therapy may lead to the feasibility of novel beam arrangements which improve organ-at-risk sparing. Med Phys. 2022 Jul; 49(7):4693-4704. PMID: 35362163.
- 181. Shusharina N, Liu X, Coll-Font J, Foster A, El Fakhri G, Woo J, Bortfeld T, Nguyen C. Feasibility study of clinical target volume definition for soft-tissue sarcoma using muscle fiber orientations derived from diffusion tensor imaging. Phys Med Biol. 2022 07 22; 67(15). PMID: 35817048; PMCID: PMC9344976.
- 182. Bortfeld T, Buti G. Modeling the propagation of tumor fronts with shortest path and diffusion models-implications for the definition of the clinical target volume. Phys Med Biol. 2022 07 25; 67(15). PMID: 35817046; PMCID: PMC9388053.
- 183. Ajdari A, Liao Z, Mohan R, Wei X, Bortfeld T. Personalized mid-course FDG-PET based adaptive treatment planning for non-small cell lung cancer using machine learning and optimization. Phys Med Biol. 2022 09 13; 67(18). PMID: 35947984; PMCID: PMC9579961.
- 184. Tattenberg S, Marants R, Niepel K, Bortfeld T, Sudhyadhom A, Landry G, Parodi K, Verburg J. Validation of prompt gamma-ray spectroscopy for proton range verification in tissue-mimicking and porcine samples. Phys Med Biol. 2022 10 12; 67(20). PMID: 36162404; PMCID: PMC9615459.
- 185. Lyatskaya Y, Winey B, Kiger WS, Hurwitz M, Zygmanski P, Makrigiorgos GM, Bortfeld TR, Doppke KP, Lu XQ, Chin LM, Biggs P, Gierga DP. Combined clinical and research training in medical physics in a multi-institutional setting: 13-year experience of Harvard Medical Physics Residency Program. J Appl Clin Med Phys. 2022 Nov 08; e13806. PMID: 36347055.
- 186. Buti G, Shusharina N, Ajdari A, Sterpin E, Bortfeld T. Exploring trade-offs in treatment planning for brain tumor cases with a probabilistic definition of the clinical target volume. Med Phys. 2022 Nov 10. PMID: 36354283.
- 187. Bortfeld T, Yan S. Our journeys through the fascinating world of proton radiation therapy. Med Phys. 2022 Dec 11. PMID: 36502491.

Other peer-reviewed scholarship

1. **Bortfeld T**, Boesecke R, Schlegel W, Bohsung J. 3-D Dose Calculation Using 2-D Convolutions and Ray-Tracing Methods. In: Hukku S, Iyer PS, eds. The Use of Computers in Radiation Therapy, Proceedings of the 10th International Conference. Lucknow, India: Alpana Arts; 1990:238-41.

- 2. Bürkelbach J, **Bortfeld T**, Becker G, Boesecke R, Schlegel W, Lorenz WJ. Optimization of radiation dose distribution by modulated irradiation fields. In: Book of Abstracts 9th Annual Meeting. Montecatini: ESTRO; 1990:90.
- 3. **Bortfeld T**, Schlegel W, Gademann G, Lorenz WJ. Treatment Planning and Realization of Conformation Radiotherapy with Photon Beams. In: Blattmann H, ed. PSI-Bericht Nr. 111, Proceedings of the Proton Radiotherapy Workshop. Villigen, Schweiz: Paul Scherrer Institut; 1991:63-6.
- 4. **Bortfeld T**, Bürkelbach J, Schlegel W. Three-Dimensional Solution of the Inverse Problem in Conformation Radiotherapy. In: Breit A, ed. Advanced Radiation Therapy Tumor Response Monitoring and Treatment Planning. Berlin-Heidelberg: Springer-Verlag; 1992:503-8.
- 5. **Bortfeld T**, Kahler DL, Waldron TJ, Boyer AL, Schlegel W. Erzeugung und Anwendung intensitätsmodulierter Strahlenfelder. In: Müller RG, Erb J, eds. Medizinische Physik '93. Erlangen: DGMP; 1993:10-1.
- Boyer AL, Bortfeld T, Kahler DL, Starkschall G, Waldron TJ. Multileaf Collimation for 3D conformal therapy. In: University of St.Louis, ed. Proc. of the 1st Int. Symposium on "3D Radiation Treatment Planning and Conformal Therapy". St. Louis, Missouri: University of St. Louis; 1993.
- Rhein B, Gardey KU, Bortfeld T, et al. Dosimetrische Verifikation bei der Berechnung irregulärer Felder für die stereotaktische Konvergenzbestrahlung mit einem Mikro-Multi-Leaf-Kollimator. In: Müller RG, Erb J, eds. Medizinische Physik '93. Erlangen: DGMP; 1993:24-5.
- Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ. Experimental Verification of Multileaf Modulated Conformal Radiotherapy. In: Hounsell AR, Wilkinson JM, Williams PC, eds. The Use of Computers in Radiation Therapy, Proceedings of the 11th International Conference. Stockport, United Kingdom: Handley Printers Limited; 1994:180-1.
- 9. Boyer AL, **Bortfeld T**, Kahler DL, Waldron TJ. MLC Modulation of X-Ray Beams in Discrete Steps. In: Hounsell AR, Wilkinson JM, Williams PC, eds. The Use of Computers in Radiation Therapy, Proceedings of the 11th International Conference. Stockport, United Kingdom: Handley Printers Limited; 1994:178-9.
- Rhein B, Engenhart R, Debus J, et al. Stereotaktische Hochdosis Konvergenztherapie bei irregulär geformten Zielvolumina. Beschreibung einer Mehrfeldtechnik mit 11 bis 14 nicht koplanaren irregulären Stehfeldern. In: Tautz M, ed. Medizinische Physik '94. Berlin: DGMP; 1994:224-5.
- 11. Schulze C, Bortfeld T, Rhein B, Höss A, Schlegel W. Consideration of Inhomogeneities in Photon Beam Dose Calculation by the Scaled Kernel Superposition Method and its Importance for Clinical Practice. In: Hounsell AR, Wilkinson JM, Williams PC, eds. The Use of Computers in Radiation Therapy, Proceedings of the 11th International Conference. Stockport, United Kingdom: Handley Printers Limited; 1994:276-7.
- 12. Schulze C, **Bortfeld T**, Rhein B, Höss A, Schlegel W. Dosisberechnung durch Superposition dichteskalierter Kerne -Erste Anwendungen und Vergleiche mit konventionellen Verfahren. In: Tautz M, ed. Medizinische Physik '94. Berlin: DGMP; 1994:222-3.
- Stein J, Bortfeld T, Dörschel B, Schlegel W. X-Ray Intensity Modulation by Dynamic Multi Leaf Collimation. In: Hounsell AR, Wilkinson JM, Williams PC, eds. The Use of Computers in Radiation Therapy, Proceedings of the 11th International Conference. Stockport, United Kingdom: Handley Printers Limited; 1994:174-5.

- 14. Zobler R, **Bortfeld T**, Götz U, Neumann M, Schwab F. Erzeugung modulierter Photononenfelder mit Hilfe von Kompensatoren. In: Tautz M, ed. Medizinische Physik '94. Berlin: DGMP; 1994:234-5.
- Boyer AL, Bortfeld T, Kahler DL, Waldron TJ. Multileaf Collimation for 3-D Conformal Radiotherapy. In: Purdy JA, Emami B, eds. 3-D Radiation Treatment Planning and Conformal Therapy, Proceedings of an International Symposium. Madison, Wisconsin, USA: Medical Physics Publishing; 1995:223-44.
- 16. Hartmann GH, Beck T, **Bortfeld T**, et al. The heavy ion therapy project at GSI: Status report. In: Richter J, ed. Medizinische Physik 1995. Würzburg: DGMP; 1995:206-7.
- 17. Hartmann GH, Beck T, Jacob C, et al. Dosimetry and treatment planning at the heavy ion therapy project at GSI. In: Kogelnik HD, ed. Progress in Radio-Oncology. Bologna: Monduzzi Editore; 1995:655-60.
- 18. Hartwig K, **Bortfeld T**, Preiser K, Stein J, Schlegel W. Erzeugung intensitätsmodulierter Felder für die inverse Therapieplanung mit Kompensatoren. In: Leitner H, Stücklschweiger G, eds. Medizinische Physik '96. Graz: DGMP; 1996:25-6.
- 19. Schneider W, **Bortfeld T**, Schlegel W. Vergleich von CT-basierten 3D-Monte-Carlo Simulationen und semiempirischen Verfahren bei Elektronenbestrahlungen. In: Leitner H, Stücklschweiger G, eds. Medizinische Physik '96. Graz: DGMP; 1996:217-8.
- Schulze C, Bortfeld T, Pijpelink J, Schlegel W. Pencil-Beam-Verfahren zur Photonendosisberechnung: Ein Ansatz zur Berücksichtigung der komplexen lateralen Streuverhältnisse bei stark gekrümmten Patientenoberflächen (Tangentialbestrahlung). In: Leitner H, Stücklschweiger G, eds. Medizinische Physik '96. Graz: DGMP; 1996:211-2.
- Schulze C, Pijpelink J, Bortfeld T, Schlegel W. Fast photon dose calculation using 2D and 3D kernel convolution techniques. In: Anonymous. Principles and Practice of 3-D Radiotherapy Treatment Planning. München: Klinik u. Poliklinik für Strahlentherapie u. Radiologische Onkologie, Klinikum rechts der Isar, Technische Universität; 1996.
- 22. Zhang G, **Bortfeld T**, Rhein B, Levegrün S, Schlegel W. Realisierung der Intensitätsmodulation mit einem Multileaf-Kollimator. In: Leitner H, Stücklschweiger G, eds. Medizinische Physik '96. Graz: DGMP; 1996:23-4.
- 23. **Bortfeld T**, Stein J, Preiser K. Clinically relevant intensity modulation optimization using physical criteria. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:1-4.
- 24. Hilsebecher J, **Bortfeld T**, Schlegel W. Considerations about the Technical Properties of an Electronic Portal Imaging Device. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:285-7.
- 25. Küster G, **Bortfeld T**, Schlegel W. Monte Carlo Simulations of Radiation Beams from Radiotherapy Units and Beam Limiting Devices using the Program GEANT. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:150-2.
- 26. Mahr A, **Bortfeld T**, Höss A, Schulze C, Schlegel W. A Generic Database Application and Interface for Administration, Visualisation and Quality Assurance in 3D Radiotherapy Treatment Planning. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:452-4.

- 27. Preiser K, **Bortfeld T**, Hartwig K, Schlegel W, Stein J. A New Program for Inverse Radiotherapy Planning. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:425-8.
- 28. Richter J, Neumann M, **Bortfeld T**. Dynamic Multi Leaf Collimator Rotation Techniques Versus Intensity Modulated Fixed Fields. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:335-7.
- 29. Schneider W, **Bortfeld T**, Schlegel W. 3D-Monte Carlo Simulations of Clinical Electron Beam Dose Distributions using CT-Numbers. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:163-5.
- Schulze C, Pijpelink J, Linton N, Bortfeld T, Schlegel W. 3D Photon Dose Calculation: From a Scientific Tool to Routine Planning. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:43-5.
- 31. Stein J, Hartwig K, Levegrün S, Zhang G, Preiser K, Rhein B, Debus J, **Bortfeld T**. Intensity-Modulated Treatments: Compensators vs. Multileaf Modulation. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:338-41.
- 32. Webb S, Convery D, **Bortfeld T**, Stein J. A General Analysis of the "Tongue-and-Groove" Effect in Dynamic MLC Therapy. In: Leavitt DD, Starkschall G, eds. Proc. of the XIIth International Conference on the Use of Computers in Radiation Therapy. Madison: Medical Physics Publishing; 1997:342-5.
- Ahlswede J, Bock M, Bortfeld T, Höver KH, Schad LR. T2-Relaxometrie zur polymergelunterstützten dreidimensionalen Dosisbestimmung. In: Voigtmann L, Geyer P, eds. Medizinische Physik 98. Dresden: DGMP; 1998:279-80.
- Ahlswede J, Bock M, Bortfeld T, Hoever KH, Oberdorfer F, Schad LR. T2-measurements for polymer gel based three-dimensional dosimetry. In: Magnetic Resonance Materials in Physics Ba, ed. Scientific Program and Book of Abstracts. Geneva: MAGMA; 1998:149-50.
- 35. Groh BA, Hesse BM, Spies L, **Bortfeld T**. Dosimetrische Eigenschaften eines videobasierten Hochenergiebildsystems. In: Voigtmann L, Geyer P, eds. Medizinische Physik 98. Dresden: DGMP; 1998:277-8.
- 36. Groh BA, Hesse BM, Spies L, **Bortfeld T**. Megavoltage computed tomography with an amorphous silicon detector array. In: American College of Medical Physics, ed. Proc. of the 5th International Workshop on Electronic Portal Imaging. Reston, VA: 1998:93-4.
- 37. Hädinger U, Föller M, **Bortfeld T**, et al. Feldformung in der stereotaktischen Konformations-Strahlentherapie mit einem computergesteuerten Micro-Multileaf-Kollimator. In: Voigtmann L, Geyer P, eds. Medizinische Physik 98. Dresden: DGMP; 1998:143-4.
- Küster G, Bortfeld T, Schlegel W. Monte Carlo simulations for narrow photon beam production. In: Grosshauser C, Seebass M, eds. Proceedings of the Workshop "Scientific Computing in Medicine" SCMED '98. London: Royal Marsden Hospital; 1998:24-5.
- Oelfke U, Bortfeld T, Schlegel W. Treatment planning for x-ray rotation therapy: the solution of the inverse problem. In: Canadian College of Physicists in Medicine, ed. COMP / OCPM Conference Proceedings of the 44th annual Scientific Meeting. London, Ontario: 1998:192-5.

- 40. Spies L, Hesse BM, Groh BA, **Bortfeld T**. Online Dosisrekonstruktion in der Tomotherapie. In: Voigtmann L, Geyer P, eds. Medizinische Physik 98. Dresden: DGMP; 1998:139-40.
- 41. Stein J, **Bortfeld T**, Keller-Reichenbecher M-A, Schlegel W, Schulze C. Das inverse Planungssystem KonRad. In: Voigtmann L, Geyer P, eds. Medizinische Physik 98. Dresden: DGMP; 1998:137-8.
- 42. Debus J, Pirzkall A, Höss A, Frank C, **Bortfeld T**, Wannenmacher M. Fractionated stereotactic radiotherapy of large base of skull meningeomas: Long term results. In: AnonymousAbstract Book of the 4th International Stereotactic Radiosurgery Society Congress. Sydney, Australia: 1999:74.
- 43. Rhein B, Grosser K, Häring P, **Bortfeld T**, Debus J. Die dosimetrische Verifikation in der intensitäts-modulierten Strahlentherapie (IMRT) am DKFZ Heidelberg. In: Gfirtner H, ed. Medizinische Physik 99. Passau: DGMP; 1999:91-2.
- 44. Spies L, Ebert M, Groh BA, Hesse BM, **Bortfeld T**. An algorithm for scatter correction in 3D megavoltage computed tomography. In: Beekman F, Defrise M, Viergever M, eds. Proceedings of the 1999 Int. Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Utrecht: Utrecht University Hospital; 1999:255-8.
- 45. Debus J, Schulz-Ertner D, Thilmann C, Wenz F, Wannenmacher M, Jäkel O, Heeg P, Karger C, Oelfke U, Schlegel W, Bortfeld T, Eickhoff H, Rietzel E, Schardt D, Scholz M, Weber U, Kraft G. Patient irradiations at GSI: first clinical results and future perspectives. In: GSI, ed. GSI Jahresbericht. Darmstadt: GSI; 2000:160-161.
- 46. Kessen A, Grosser K, Bortfeld T. Simplification of IMRT intensity maps by means of 1-D and 2-D median-filtering during the iterative calculation. In: Schlegel W, Bortfeld T, eds. Proc. of the XIIIth International Conference on The Use of Computers in Radiation Therapy. Heidelberg: Springer; 2000:545-7.
- 47. Kooy H, Oelfke U, Lomax A, Paganetti H, Newhauser W, Bortfeld T, Goitein, M. Design considerations for intensity modulated proton therapy treatment planning. In: Schlegel W, Bortfeld T, eds. Proc. of the XIIIth International Conference on The Use of Computers in Radiation Therapy. Heidelberg: Springer; 2000:71-72.
- 48. Küfer K-H, Hamacher HW, **Bortfeld T**. A multicriteria optimization approach for inverse radiotherapy planning. In: Schlegel W, Bortfeld T, eds. Proc. of the XIIIth International Conference on The Use of Computers in Radiation Therapy. Heidelberg: Springer; 2000:26-8.
- 49. Küster G, **Bortfeld T**. Applicability of a multi-hole collimator for scanned photon beams: A Monte Carlo study. In: Schlegel W, Bortfeld T, eds. Proc. of the XIIIth International Conference on The Use of Computers in Radiation Therapy. Heidelberg: Springer; 2000:179-81.
- 50. Nill S, Oelfke U, **Bortfeld T**. A new planning tool for IMRT treatment: Implementation and first application for proton beams. In: Schlegel W, **Bortfeld T**, eds. Proc. of the XIIIth International Conference on The Use of Computers in Radiation Therapy. Heidelberg: Springer; 2000:326-8.
- Schneider W, Bortfeld T, Schlegel W. Influence of tissue composition on the results of Monte Carlo simulations for patient dose calculations. In: Schlegel W, Bortfeld T, eds. Proc. of the XIIIth International Conference The Use of Computers in Radiation Therapy. Heidelberg: Springer; 2000:443-5.
- 52. Spies L, Ebert M, Groh BA, Hesse BM, Bortfeld T. Quantitative cone beam megavoltage CT. In: Schlegel W, Bortfeld T, eds. Proc. of the XIIIth International Conference on The Use of Computers in Radiation Therapy. Heidelberg: Springer; 2000:564-6.

- 53. Jiang SB, **Bortfeld T**, Trofimov A, Rietzel E, Sharp G, Choi N, Chen GTY. Synchronized Moving Aperture Radiation Therapy (SMART): Treatment Planning Using 4D CT Data. In: Yi BY, Choi AK eds. Proceedings of the XIVth International Conference on the Use of Computers in Radiation Therapy. Korea: Jeong Publishing; 2004:429-432.
- 54. Nohadani O, **Bortfeld T**. The continuum of 3D to 4D treatment delivery. Proc. of XVI-th ICCR, Amsterdam; 2010.

Non-peer reviewed scholarship in print or other media:

Proceedings of meetings or other non-peer reviewed scholarship

1. Schlegel W, **Bortfeld T**, Stein J, eds. Dreidimensionale Stahlentherapieplanung. Tagungsband des Workshops '95. Heidelberg: Selbstverlag; 1995.

Reviews, chapters, monographs and editorials

- 1. Schlegel W, **Bortfeld T**, Bendl R, Pross J. Optimierung der Dosisverteilung mit modernen 3D-Verfahren. In: Bohndorf W, et al. ed. Bestrahlungsplanung: Aktueller Stand und Perspektiven. Würzburg: Universität Würzburg; 1994:105-10.
- 2. Bortfeld T. Optimierung und inverses Problem (I). In: Schlegel W, Bortfeld T, Stein J, eds. 3D-Workshop '95. Selbstverlag; 1995:129-36.
- Bortfeld T. Methods for optimization in conformal radiotherapy. In: Cattaneo GM, Conte L, eds. Tecnologie e Metodologie per la Radioterapia Conformazionale; "Technological and Methodological aspects of Conformal Radiotherapy". Como: Assoziazione Di Fisica Biomedica A.I.F.B. 1996:118-26.
- 4. **Bortfeld T**. Inverse Treatment Planning. In: ESTRO, ed. Challenges in Conformal Radiotherapy, Proc. of the ESTRO Pre-Meeting Workshop. Nizza: ESTRO; 1997:1-10.
- 5. Boyer AL, **Bortfeld T**. Modulated Cone Beam Conformal Therapy. In: Sternick ES, ed. The Theory and Practice of Intensity Modulated Radiation Therapy. Madison, Wisconsin, USA: Advanced Medical Publishing; 1997:91-105.
- 6. **Bortfeld T**, Stein J, Schlegel W. Inverse Planung und Bestrahlungstechniken mit intensitätsmodulierten Feldern. In: Richter J, Flentje M, eds. Strahlenphysik für die Radioonkologie. Stuttgart: Thieme-Verlag; 1998:121-9.
- 7. **Bortfeld T**. Inverse planning and optimisation. In: European School of medical Physics (ESMP), ed. European School of Medical Physics. Archamps: European School of Medical Physics (ESMP); 1998:
- 8. **Bortfeld T**. Equipment for conformal Radiotherapy. In: Anonymous: Teaching Course in Conformal Radiotherapy in Practice. Amsterdam: ESTRO; 1998:147-61. This material was republished in updated form in 1999, 2000, 2001, 2002, and 2004.
- 9. **Bortfeld T**. Inverse treatment planning. In: Anonymous: Teaching Course in Conformal Radiotherapy in Practice. Amsterdam: ESTRO; 1998:111-21. This material was re-published in updated form in 1999, 2000, 2001, 2002, 2004, and 2005.
- 10. **Bortfeld T**. Röntgencomputertomographie: Mathematische Grundlagen. In: Schlegel W, Bille J, eds. Medizinische Physik 2 (Medizinische Strahlenphysik). Heidelberg: Springer; 2002:229-245.

- Bortfeld T. Röntgencomputertomographie: Physikalisch-technische Grundlagen. In: Schlegel W, Bille J, eds. Medizinische Physik 2 (Medizinische Strahlenphysik). Heidelberg: Springer; 2002:247-265.
- Bortfeld T, Thieke C, Küfer K-H, Trinkaus H. New Approaches in Intensity-Modulated Radiotherapy - A New Optimization Paradigm. In: Kogelnik HD, Lukas P, Sedlmayer F, eds. Progress in Radio-Oncology VII. Bologna: Monduzzi Editore; 2002:251-258. ISBN 88-323-2515-2.
- 13. **Bortfeld T**. Physical Optimization. In: Palta JR, Mackie TR eds. Intensity-Modulated Radiation Therapy The State of the Art. Madison: Medical Physics Publishing; 2003:51-75.
- 14. Mohan R, **Bortfeld T**. The Potential and Limitations of IMRT: A Physicist's Point of View. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE eds. Image-Guided IMRT. Heidelberg: Springer Verlag; 2005:11-18.
- 15. Paganetti H, **Bortfeld T**. Proton Therapy. In: Schlegel W, Bortfeld T, Grosu A-L eds. New Technologies in Radiation Oncology. Heidelberg: Springer Verlag; 2005:345-364.
- Bortfeld T, Thieke C. Optimization of Treatment Plans, Inverse Planning. In: Schlegel W, Bortfeld T, Grosu A-L eds. New Technologies in Radiation Oncology. Heidelberg: Springer Verlag; 2005:207-220.
- Mohan R, Bortfeld T. Proton Therapy: Clinical Gains Through Current and Future Treatment Programs. In: Meyer JL (ed): IMRT, IGRT, SBRT – Advances in the Treatment Planning and Delivery of Radiotherapy, ed 2, rev. and ext. Front Radiat Ther Oncol. Basel, Karger, 2011, vol. 43, pp 440–464.
- 18. Brada M, **Bortfeld T**. Proton therapy: the present and the future. Semin Radiat Oncol. 2013 Apr;23(2):75-6.
- 19. Unkelbach J, Craft D, Gorissen BL, **Bortfeld T**. Chapter 22: Treatment Plan Optimization in Proton Therapy. In: Das I and Paganetti H: Principles and Practice of Proton Beam Therapy. Medical Physics Publishing 2015.

Books/textbooks for the medical or scientific community

- 1. Schlegel W, **Bortfeld T** (eds.). The Use of Computers in Radiation Therapy. Proceedings of the XIIIth International Conference on The Use of Computers in Radiation Therapy. Heidelberg: Springer-Verlag; 2000.
- 2. Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer D (eds.). Image-Guided IMRT. Heidelberg: Springer-Verlag; 2005.
- 3. Schlegel W, **Bortfeld T**, Grosu A-L (eds.). New Technologies in Radiation Oncology. Heidelberg: Springer Verlag; 2005.

Letters to the Editor

- 1. Boyer AL, **Bortfeld T**. Clinical Realization of 3D Conformal Intensity-Modulated Radiotherapy [letter; response]. Int J Radiat Oncol Biol Phys. 1995;32:1548
- 2. **Bortfeld T**, Schlegel W, Dykstra C, Levegrün S, Preiser K. Physical vs Biological Objectives for Treatment Plan Optimization [letter; comment]. Radiother Oncol. 1996;40:185
- 3. **Bortfeld T**, Oelfke U. CT-reconstruction from fan data using parallel backprojection (letter). Med Phys. 1999;26:2036

- Paganetti H, DeLaney T, Bortfeld T. Neutron dose in proton radiation therapy: in regard to Eric J. Hall (Int J Radiat Oncol Biol Phys 2006;65:1-7). Int J Radiat Oncol Biol Phys. 2006; 66:1594-1595.
- 5. Gorissen BL, Unkelbach J, **Bortfeld TR**. Mathematical Optimization of Treatment Schedules. Int J Radiat Oncol Biol Phys. 2016 Sep 1; 96(1):6-8. PMID: 27511841.
- 6. Craft D, Khan F, Young M, **Bortfeld T**. The Price of Target Dose Uniformity. Int J Radiat Oncol Biol Phys. 2016 Nov 15; 96(4):913-914. PMID: 27788961.
- Fiorino C, Jeraj R, Clark CH, Garibaldi C, Georg D, Muren L, van Elmpt W, Bortfeld T, Jornet N. In reply to the letter to the editor: "In reply to Fiorino et al: The central role of the radiation oncologist in the multidisciplinary and multiprofessional model of modern radiation therapy". Radiother Oncol. 2021 02; 155:e22-e23. PMID: 33412208.

Professional educational materials or reports, in print or other media:

- 1. A pioneering approach to cancer treatment (Video, Institute of Physics, Physics World) <u>https://physicsworld.com/a/a-pioneering-approach-to-cancer-treatment/</u> 2013.
- 2. Targeting tumors (Video, Institute of Physics, Physics World) <u>https://physicsworld.com/a/targeting-tumours/</u> 2013.
- 3. Proton therapy teams up with PET imaging (Video, Institute of Physics, Physics World) <u>https://physicsworld.com/a/proton-therapy-teams-up-with-pet-imaging/</u> 2013.
- 4. Fighting cancer with mathematics (Video, Institute of Physics, Physics World) <u>https://physicsworld.com/a/fighting-cancer-with-mathematics/</u> 2013.
- Bortfeld T, Orton C. AAPM Virtual Museum of Medical Physics: Gallery 13, Computerized Treatment Planning and the Development of Modern External Beam Radiotherapy. <u>https://museum.aapm.org/exhibit/13-treatment-planning-and-the-development-of-modernexternal-beam-radiotherapy/</u> 2020.

Thesis:

- 1. **Bortfeld T**. 3-D Aufnahme und Rekonstruktion lichtmikroskopischer Zellkernbilder [diploma thesis]. Heidelberg University; 1988.
- 2. **Bortfeld T**. Neue Methoden zur Lösung des inversen Problems der Strahlentherapieplanung [PhD dissertation]. Heidelberg University; 1990.
- 3. **Bortfeld T**. Dosiskonformation in der Tumortherapie mit externer ionisierender Strahlung: Physikalische Möglichkeiten und Grenzen [habilitation]. Heidelberg University; 1995.

Narrative Report

I am a Medical Physicist with a passion for research and development to solve clinical problems, deploying the resulting innovative technologies in the clinic, and translating new problems that arise in the clinic back into research questions. I made this transition of technologies from the bench to the bedside and back many times throughout my career.

Investigation and Clinical Innovation

My core area of excellence is investigation. Starting with my PhD thesis project at the University of Heidelberg and the German Cancer Research Center, I have been instrumental in the early development and in the later refinement of intensity-modulated radiation therapy (IMRT). The primary tools in conducting my research have included methods from computer science and mathematical optimization (Operations Research, OR). While I initially developed the tools primarily within my own team, I have later started to collaborate closely with Medical Physicists around the world, leading experts in Operations Research, several companies, and of course Radiation Oncologists. Within these multi-disciplinary collaborations, we developed IMRT planning and delivery, multi-criteria plan optimization and robust optimization, and translated them into the clinics worldwide. IMRT delivered with multileaf collimators and optimized inverse planning as rooted in my earlier work have since become the state-of-the-art in modern Radiation Oncology with over 30 million patients treated and approximately 2.5 million quality-adjusted life years gained.

My current areas of interest are the optimization of the clinical target volume (CTV) definition, optimized personalized sequencing/fractionation of radiation treatments in combination with other treatment modalities, and the democratization of proton therapy.

In addition to Operations Research tools, my "toolbox" includes imaging methods and nuclear physics methods for image guidance and for controlling the range of proton beams in the patient, all with the common goal of delivering radiation more precisely.

Teaching and Administration

One of my most rewarding professional experiences has been to inspire students and young faculty, to be then inspired by their insights and ideas, shaping our field moving forward. I enjoy classroom teaching and conference presentations as much as one-on one teaching and mentoring. As a result of my dedication to teaching, I completed my "habilitation" at the University of Heidelberg – a prerequisite for becoming a university teacher and professor in Germany. Because of my desire to attract students from the Physics Department to Medical Physics, I was one of the first Medical Physicists who did their habilitation in the Physics Department, not the Medical School. I am strongly convinced that the field of Medical Physics needs both, the clinical focus, which always comes first, but also the strong scientific foundation. Together with my colleague Robert Jeraj I have worked on this clinic-research balance as cochair of the Working Group Future of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Topical Group on Medical Physics of the American Physical Society (APS). I am working hard on creating and maintaining an inspiring clinical-translational-research spirit also in my role as the Division Chief of Radiation Biophysics at the Massachusetts General Hospital.