Treatment plan optimization

Intensity-modulated proton therapy (IMPT)
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Overview

. s performed (possibly MRI, PET in addition)

. |Images are registered

umor volume and radiosensitive organs are delineated
4. ‘Treatment plan optimization ‘

Dose calculation (physics) + Optimization (mathematics)

A. Fluence map optimization

- Intensity-modulated proton therapy (IMRT)
B. IMRT planning

- leaf sequencing
- direct aperture optimization
- VMAT optimization



Treatment planning

High level goal

 achieve cancer cure
* avoid serious side effects

clinical outcome data

(dose-response relation)

N

Intermediate goal

e prescribed dose to the tumor
* maximum tolerance doses to the organs at risks



Treatment planning

Intermediate goal

* prescribed dose to the tumor
* maximum tolerance doses to the organs at risks

Treatment planning

(how can we realize the desired dose distribution)

N

Treatment plan parameters

 beam parameters (direction, energy, position, spot size)
* beam intensities



Treatment parameters




Treatment parameters

What are treatment parameters?

e incident direction (beam angle)
* beam size (sigma)

e initial energy

* lateral position

* intensity (fluence)



Treatment parameters

How are they determined?

* incident direction (beam angle)

* beam size (sigma)

—

e initial energy

* |ateral position

—

* intensity (fluence)

chosen manually
(based on geometry)

fixed
(determined by machine)

fixed pencil beam grid
(to cover the entire tumor)

Determined by mathematical
optimization methods



Beam directions
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Pencil beam grid

Lateral spacing: about one sigma (beam width)

Energies: typically there is a fixed set of energies
(e.g. at 5 mm distance in range)

* need ray tracing in order to find the
corresponding bragg peak locations

e pick the energies that fall into the
target volume

=>» set of pencil beams characterized by
(angle, energy, lateral position)

=» calculate dose distributions of all pencil beams



Dose calculation




Dose-influence matrix

Pencil beam dose distribution:

D(Q,x',y',EO) (;X, Y, Z)

J
|
Y position in the patient

pencil beam attributes

Dose contribution of beam j to voxel i

Dij P pencil beam j

/

voxel index i



Dose distribution

Total dose in voxel i is given by the sum over the
contributions of all beams j

d, = Eijij
j

AN

Dose contribution of beam j

, . per unit intensity
Intensity of beam j

[ Giga protons ] [ Gray per Giga proton |



Treatment planning problem

We want to determine the beam intensities x; so that we closely
approximate a desired dose distribution

 The number of pencil beams is very large:
N =10°---10°
e cannot be done manually

* need for mathematical optimization methods



Mathematical optimization

Goals: < deliver dose of 70 Gray to the tumor
* |imit dose to spinal cord to 50 Gray
* |imit dose to esophagus to 60 Gray
* minimize dose to the adjacent healthy tissues
(lungs, heart, ...)




Mathematical optimization

Mathematical optimization problems are defined through:

* Objectives (wishes)
e Constraints (definitely has to be fulfilled)

General formulation:
minimize f(x) (objective function)
X

subject to g2.(x)=<0 \vds (set of constraints)



Mathematical optimization

Application to radiotherapy

minimize WTE(d,- - 70)2 +wy E d,

X

€T I€H
\ )
Y \_'_I
minimize deviation from minimize dose in
70 Gray in the tumor healthy tissues
subject to X; = 0 V_] fluence cannot be negative

d <40 Vi& S limitdose tospinal cord to less
: than 40 Gray



Mathematical optimization

as a function of beam weights:

minimize 3| 10,70 +, 3 S,
r T\ j I€EH |
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quadratic function of x;

subject to x; 20 Vj
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Single pencil beam Equal intensity for all pencil beams

Goal:

determine beam intensities that yield a homogeneous dose in
the tumor and spare healthy tissues



Optimization problem

Spot intensity optimization problem:
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quadratic function of x;

subject to x; 20 Vj

Y xD;<40 ViES
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linear functions of X;



Visualize the optimization problem

e consider only 2 pencil beams

=» 2 optimization variables (intensities)
=>» we can plot the objective function and the constraints




Obijective function

Objective function for this problem:
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Optimal solution

Corresponding dose distribution:




Constraints

Constraints on the spinal cord are linear functions of the intensities:
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xD,+x,D,<40 ViES

lines where constraints

150

hold with equality
x,D, +x,D, =40

(7 spinal cord voxels)



Constraints

optimal solution
/ within the feasible set

Feasible set

(region where all
150 constraints are satisfied)




Optimal dose distribution (satisfying the constraints)

(lower weight for the pencil beam that contributes more dose to the spinal cord)



Optimization algorithms

Here: two variables

=» can find the optimum by calculating the objective
function for all (x,x,)

Realistically: 103...10° variables

=» requires mathematical optimization methods



Gradient descent

First step:

Unconstrained optimization ( consider only f(d) )
Basic method:

Gradient descent

/ af \ Recall:
Vf = ox, * Gradient vector is perpendicular to the
df isoline of the objective function f
. * points in the direction of steepest
N2 increase of the function f



Gradient descent

Let x° be the initial guess of beam weights

We can get to a lower objective function value by talking a small step
along the negative gradient direction
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Gradient descent

Iterative algorithm:

* initialize (x,°=0, x,° = 0)
* choose small enough step size a >0

while (stopping criterion not fulfilled)
Kk = ok —an(xk)
k<—k+1

end



Gradient descent

Gradient calculation:

Objective:
2
F0 =Y (d; - -70)’ ) = Y| Y x,D,;-70

T T\ j
Gradient: EGf 9d, (Chain rule)

ax od. 0x .

ad =¥ 2(d,-70)D,
ax ieT axj ieT



Dose constraints

Handling dose constraints:

Penalty method:

convert constraint into a penalty term in the objective function

Constraint: d =40 VieSs

(d,-40)* d,>40

0 otherwise

Penalty term: f+u(d, —40)>  (d -40) ={

=» does not change the objective function
within the feasible region

=» creates an unconstrained optimization problem
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Visualization:
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Dose constraints

Problem:

* constraints only fulfilled when p -> oo
* may lead to numerical problems, slow convergence

150
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f+50-2(di—40)f
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Projection method

Handling positivity constraints: x; 20 Vj

Projection method:

at every iteration, project current solution xk onto the positivity
constraint (i.e. find the closest xk that fulfills the constraint)

while (stopping criterion not fulfilled)

X = x" - (fo(xk)

k+1 k+1
xj+ eIllax(O,)cj+)

k<—k+1
end



Projection method

Remarks:

Projection method suited for bound constraints:

e constraint hyper planes are perpendicular
e projecting on every constraint once fulfills all constraints

General linear constraints:

e projection can be done analytically (efficiently)
* but has to be done iteratively (projection on one constraint
may violate one that was satisfied before)

Nonlinear constraints:

* have to approximate projection



IMPT case

3 beams, 238 pencil beams, 5 mm sigma, 5 mm spacing

Objective:  f(d)= ¥ (d,~70) +50- Y (d,-40).

ieT 1SN

while (k<1000)

= x* - an(xk)

k+1 k+1
x emax((),x +)

k<—k+1
end






Improvements

Improvements:

Line search method:

 determining the best step size

Using curvature information

* improving the step direction using a quadratic
approximation of the objective function

Constraint handling

* pure penalty method fulfills constraints only for p-> oo
* better methods based on Lagrange multiplier theory



Newton method

Using curvature information

Newton method

The objective function is approximated as a quadratic function at the

current beam intensities x

f(x+Ax)= f(x)+Ax-Vf(x)+5AxH (x)Ax

af oy
. ox; 0x,0x,
Hessian H(x)=| | )
of 9f
ox,0x,  0x

(Taylor expansion at the current solution x)




Newton method

|dea:

go to the minimum of the quadratic approximation
in the next iteration

Quadratic approximation

f(x+Ax)= f(x)+Ax-Vf(x)+5AxH (x)Ax

find Ax that minimizes f(x+Ax)
V, f(x+Ax)=Vf(x)+H(x)Ax =0

Solution: Ax =-H ' (x)Vf(x)



Newton method

Newton method:

(unconstrained optimization)

while (stopping criterion not fulfilled)

Y _akH—l(xk)Vf(xk)

k—k+1 | \
Gradient direction is

modified by multiplication
with the inverse Hessian

end

|
The Newton method has a natural step sizea =1



Newton method

Remarks:

The pure Newton method is not often used in practice

* Problems if second derivatives are close to zero

* Explicit calculation of the Hessian (plus its inverse!) is too
time consuming if number of variables is large

But, many general purpose methods for nonlinear optimization
are based on a quadratic approximation of the cost function

* Quasi-Newton methods (BFGS, L-BFGS) iteratively
approximate the inverse Hessian

e Sequential quadratic programming (SQP)



Lagrange multiplier theory

Quadratic penalty functions:

f(d)=f(d)+u- Y (d,~40)’

€S
Often used in radiotherapy planning, but

* constraints strictly fulfilled only for p -> oo
* ill-conditioning, slow convergence for large p

Easiest extension: Augmented Lagrange function

L(d) = f(d)+ 3 A, (d,~40)+ ¥ u,(d, - 40)’

\ J
|

Lagrange function



Lagrange multiplier theory

L(d) = f(d)+ 3 A, (d,~40)+ ¥ u,(d, - 40)’

[IShY €S
Lagrange multipliers

Properties:

There exists a set of Lagrange multipliers A > 0 such that the
unconstraint minimum of L(d) is identical to the constrained
minimum of f(d) subject to d-40<0

For large enough (but finite) y, the augmented Lagrange function
L(d) is convex around the minimum.

Remark: Lagrange multipliers not know a priori, have to be
estimated using an algorithm



