lterative CT reconstruction

A short introduction




Analytic reconstruction

Previous lectures:

Analytic reconstruction techniques

* analytic description of the forward problem
Np.0) = [ F@)8(p-wny) i = R{f ()}
A

e solve by analytically inverting the Radon transform operator

f(x) :/ / V|Ag(v) exp(2mive - y) dvde
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Algebraic reconstruction

Now:

Algebraic reconstruction techniques

* discrete problem representation

(through algebraic equations)

e optimization based reconstruction techniques



Problem formulation

Unknown image

Vector of absorption coefficients  X;
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Problem formulation

Unknown image

Vector of attenuation coefficients  X;
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Observation

Y

Total attenuation y;:

sum over the attenuation in every
voxel that ray j passes through

Al.j length of the segment of ray
that falls into voxel i

Y= zAijxi

note: A is sparse



Problem formulation

* y;is measured

. A,-j can be constructed (similar to ray tracing in dose calculation)

CT reconstruction task:

Find a solution to the linear system of equations

Yi= zAij'xi



1. One difficulty: Problem size

Y= Aijxi
/ > \

. 512 x 512 x 200
(#pixels)? x #angles

A, is sparse but still very large (may not fit in memory)

2. Problem is ill-posed

 underdetermined (many solutions) (reconstruction from undersampled projections)
 overdetermined (no solution)



Projection methods

First approach:

Find a solution to the system of linear equations
* xis a N-dimensional vector

* each measurement y; defines in (N-1)-dimensional hyper-plane

Solution method:

Iteratively project on hyper-planes



Projection
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lterative Projection

Iteratively project on planes

* |fthereis a unique solution, the
projection method converges to
that solution




Variation

Project on all planes and take
an average step

(a,"x"-y,)
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Optimization methods

Second approach:

Look at this as an optimization problem

(can address the ill-posed-ness this way)

Y= ZA,-J-X,- System of linear equations

f

2
minimize E(yj — EA,jxi) Least square minimization problem

X )
J



Gradient descent

Most basic optimization method: Gradient descent

C(x)= E(yj - EAx

2

Gradient vector points in the direction of steepest ascent
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Gradient descent

Objective function C(x)= E(yj - zAijxl-

dC
Calculate gradient P —22(yj - EAU-XZ-
i j i

t+1

(" =x"=(a, x" =y,

i
H%H

Calculate descent M =x'-aV C(x")



Gradient descent

Compare to projection method

Projecti t+1 t 1 N t a;
rojection = x __E(aj.x — )
2 )
Calculate descent M =x'"-aV C(x")
M
=x' —(xEZ(aj - x' —y].)aj
j=1

* Projection method can be interpreted as gradient descent
(for particular step size and weighting factors)



Historically:  Different versions of projection methods
(ART, SIRT, SART, ...)

Contemporary topics:

* Reconstruction from incomplete data, Compressed sensing methods

minimize E ()’ i E Aijxi

X ,
J

2

+TV(x)

L,-regularization

* Reconstruction using prior knowledge

 Improved forward models, e.g. beam hardening



