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Introduction

Invention of Computerized Tomography (CT)

Sir Godfrey N. Hounsfield
(Electrical Engineer)
EMI

Allan M. Cormack
(Physicist)
South Africa, Boston

Joint Nobel Prize for Physiology or Medicine, 1979
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Introduction

First CT scanner prototype (Hounsfield apparatus)
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The 2D Radon transform
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The 2D Radon transform Projection

Projection

Consider a function f(x) of the variables x = (x1, x2) in the plane A.

In CT, f(x) stands for the distribution of attenuation coefficients in a
planar cut through the patient’s body.

Let us assume that we know the “projections” (x-ray projections) of
f(x) for arbitrary projection angles.
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The 2D Radon transform Projection

From transmission to projection
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The 2D Radon transform Projection

Projection

Mathematically, the projection λ
is the integral of f(x) along a
(parallel) set of projection lines:

λφ(p) =

∫
A

f(x) δ(p−x·n̂φ) d2x

1 Note: A projection line is
described in the Hessian normal
form by the equation p = x · n̂φ.

2 Note also: The δ-function
“picks” those points x from the
plane A that lie on the
projection line.
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The 2D Radon transform Projection

Radon Transform

We will consider all projections of f as a two-dimensional function
with the arguments p and φ, and write it as λ(p, φ). The transform
f(x1, x2)→ λ(p, φ) is called a Radon transform1

In symbols:
λ(p, φ) = R {f(x)} .

The problem of reconstructing f(x) from the (known) projections λ(p, φ)
is basically the determination of the inverse Radon transform, R−1.

1After the mathematician Johann Radon, who described the first mathematical
method for a reconstruction from projections as early as in 1917
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The 2D Radon transform Projection

The problem: inverting the Radon transform

Object p 

φ	



Sinogram 

p 

φ	



? 
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Inverting the 2D Radon transform Backprojection

Backprojection

By backprojection we mean “smearing out” of the values of λφ(p) along
the projection lines, over the plane A, which results in a streak image.
Mathematically, backprojection under an angle φ is simply given by:

fφ(x) = λφ(x · n̂φ).

If we perform backprojections for all angles within the interval [0, π) and
integrate the results, we get

fb(x) =

π∫
0

λφ(x · n̂φ) dφ.

fb(x) = B {λ(p, φ)} = BR {f(x)} .
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Inverting the 2D Radon transform Backprojection

Backprojection
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Inverting the 2D Radon transform Backprojection

Backprojection alone does not reconstruct the object!

a) b)

(a) Shepp and Logan phantom

(b) ”Reconstruction” of (a) with backprojection
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Inverting the 2D Radon transform Backprojection

Backprojection alone does not reconstruct the object!
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Inverting the 2D Radon transform Central Slice theorem

The Central Slice Theorem provides the relationship between the
one-dimensional (1-D) FT of a projection λφ(p) = Rφ {f(x)} and the 2-D
FT of f(x):

Λφ(ν) = F1

{
Rφ {f(x)}

}
=

∞∫
−∞

∫
A

f(x) δ(p− x · n̂φ) d2x

 exp(−2πi νp) dp

=

∫
A

f(x)

 ∞∫
−∞

δ(p− x · n̂φ) exp(−2πi νp) dp

d2x

=

∫
A

f(x) exp(−2πi νx · n̂φ) d2x.

The last integral is the 2-D Fourier transform F (ρ) of the function f(x)
along the line ρ = νn̂φ.

Thomas Bortfeld Image Reconstruction 1 – Planar reconstruction from projectionsHST.533, February 9, 2015 16 / 30



Inverting the 2D Radon transform Central Slice theorem

Central Slice Theorem

Theorem (Central Slice Theorem)

The 1-D FT of the projection of a 2-D function yields the 2-D FT of the
function along a line through the origin of the frequency domain.

Using operator notation we can write this as:

F1

{
Rφ {f(x)}

}
(ν) = F2 {f(x)} (ρ = νn̂φ)

or just
F1R = F2.
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Inverting the 2D Radon transform Central Slice theorem

Central Slice Theorem
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Inverting the 2D Radon transform The filtered backprojection (FBP) algorithm

Filtered Backprojection: formal derivation

Write f(x) as the inverse Fourier transform of F (ρ), in polar coordinates:

f(x) =

∫
∞

F (ρ) exp(2πix · ρ) d2ρ

=

2π∫
0

∞∫
0

νF (νn̂φ) exp(2πi νx · n̂φ) dν dφ

For symmetry reasons:

f(x) =

π∫
0

∞∫
−∞

|ν|F (νn̂φ) exp(2πi νx · n̂φ) dν dφ

With the Central Slice Theorem we obtain finally:

f(x) =

π∫
0

∞∫
−∞

|ν|Λφ(ν) exp(2πi νx · n̂φ) dν dφ
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Inverting the 2D Radon transform The filtered backprojection (FBP) algorithm

Filtered Backprojection: algorithm

The function f(x) can be reconstructed from the projection profiles λφ(p)
using the following steps:

1 Fourier transform of λφ(p) → Λφ(ν);

2 multiplication of Λφ(ν) with |ν| → Λ∗φ(ν);

3 inverse Fourier transform of Λ∗φ(ν) → λ∗φ(p′);

4 backprojection of λ∗φ(p′) and integration over φ → f(x).

The first three steps are a filtering (convolution) of the projection profiles
with the filter h−1(p), which is the inverse FT of H−1(ν) = |ν|.
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Inverting the 2D Radon transform The filtered backprojection (FBP) algorithm

Filtered Backprojection: intuitive explanation

1 Backprojection of λφ(p) under angle angle φ corresponds with
creating a line through the origin of the 2D Fourier space.

2 Backprojection from many directions results in higher line density
near the origin, lower density away from the origin - suppression of
higher spatial frequencies with 1/|ν|.

3 This results in a low-pass filtering (blurring) of the image.

4 Can be corrected with |ν| filter.
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Practical implementation
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Practical implementation

Discrete projection data (sinogram):

We know λm·∆φ(n ·∆p) for n = −N, . . . , N , and m = 1, . . . ,M with
M = π/∆φ.

Assume that the sampling interval, ∆p, satisfies the Nyquist sampling
condition. This means, we assume that projection profiles in the
Fourier domain, Λφ(ν), are bandlimited within − 1

2∆p < ν < 1
2∆p .

Then the inverse transfer function H−1(ν) = |ν| can be restricted to

the same interval,
[
− 1

2∆p ,
1

2∆p

]
.

The modified function

H−1
r (ν) =

{
|ν| for |ν| ≤ 1

2∆p

0 otherwise

is called “ramp filter”.
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Practical implementation

To determine the filter h−1
r (p) in the spatial domain we have to do an

inverse Fourier transform of H−1
r (ν)m which yields:

h−1
r (p) = F−1

1

{
H−1
r (ν)

}
=

1

4∆p2

(
2 sinc

(
p

∆p

)
− sinc2

(
p

2∆p

))
,

where sinc(x) stands for sin(πx)/(πx).

A sampling at discrete positions p = n∆p yields the discrete version:

h−1
r (n∆p) =


1

4∆p2
for n = 0

0 for n even, 6= 0

− 1

n2π2∆p2
for n odd .

This filter goes back to Ramachandran and Lakshminarayanan.
It is known as “Ram-Lak” filter.
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Practical implementation

Ram-Lak filter
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Practical implementation

Another commonly used filter is the so-called “Shepp and Logan” filter,
which results from averaging (smoothing) of the Ram-Lak filter over
intervals of the width ∆p (or in the frequency domain from the ramp filter
|ν| by multiplication with sinc(ν∆p)):

h−1
s (p) = − 2

π2∆p2

1− 2(p/∆p) sin(πp/∆p)

4(p/∆p)2 − 1
.

The discrete version of this filter is very simple:

h−1
s (n∆p) = − 2

π2∆p2(4n2 − 1)
.
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Practical implementation

Shepp-Logan filter
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Practical implementation

Simple backprojection Filtered backprojection
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Media File (video/mpeg)


filtered_bp.mpg
Media File (video/mpeg)



Homework

Homework 1: reconstruct yourself!

a) Take a picture of yourself and convert it to a grayscale 100 x 100
pixel square image.

b) Create your sinogram space for 100 projection angles.

c) Reconstruct your image by filtered backprojection using (i) the
Ram-Lak filter, and (ii) the Shepp-Logan filter. Do the filtering in the
spatial domain using filters h−1

r (Ram-Lak) and h−1
s (Shepp-Logan).
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Further Reading

A.C. Kak, M. Slaney: Principles of Computerized Tomographic
Imaging. Reprint: SIAM Classics in Applied Mathematics, 2001.
PDF available: http://www.slaney.org/pct/pct-toc.html

F. Natterer: The Mathematics of Computerized Tomography.
Reprint: SIAM Classics in Applied Mathematics, 2001.

R.N. Bracewell: The Fourier Transform and its Applications.
McGraw-Hill, New York, 3rd edition, revised, 1999.

T. Bortfeld: Röntgencomputertomographie: Mathematische
Grundlagen. In: Schlegel W, Bille J, eds. Medizinische Physik 2
(Medizinische Strahlenphysik). Heidelberg: Springer; 2002: 229-245.
English translation available from author.

J. Radon: Über die Bestimmung von Funktionen durch ihre
Integralwerte längs gewisser Mannigfaltigkeiten.
Berichte der Sächsischen Akademie der Wissenschaften – Math.-Phys.
Klasse, 69:262–277, 1917.
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