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Review

● Warping based on “pulling”

● Quadratic image cost function (SSD)

● Use of image gradient to find correspondences

● Stabilized step length

● Demons algorithm

● How to use Jacobian matrix

● B-spline methods



  

Review

● What are the salient properties of the demons 
and B-spline method?



  

PDE methods

● Based on physical models

– Especially linear elastic

μ ∇ 2u+(μ+λ) ∇ ∇ ⋅ u+F= 0



  

PDE methods

● Review of multi-variate calculus (in 3D)

The gradient applied to a scalar function.
For a vector function, gradient becomes Jacobian.

∇ g
grad g [dgdx dg

dy
dg
dz ]



  

PDE methods

● Review of multi-variate calculus (in 3D)

The divergence (“flux density”) applied to 
a vector field.  It is the rate at which a fluid leaves 
each point.

∇ ⋅G
div g

dGx
dx
+
dG y

dy
+
dG z

dz



  

PDE methods

● Review of multi-variate calculus (in 3D)

The Laplacian applied to a scalar field.
It is the rate at which the average within a region 
changes as the region grows.

∇ ⋅ ∇ g
∇ 2g
Δg

div grad g

d2g
dx2 +

d2 g
dy2 +

d2g
dz2



  

PDE methods

● Review of multi-variate calculus (in 3D)

The curl (“circulation density”) is applied to a 
vector field.  It is a vector representing the 
strength and direction of circulation

∇ × G
curlG [(dGzdy − dG y

dz ) (dG x

dz
−
dG z

dx ) (dG y

dx
−
dG x

dy )]



  

PDE methods

● Review of multi-variate calculus (in 3D)

The Vector Laplacian is equivalent to the scalar 
Laplaian, applied to each component 
independently.

∇ ⋅ ∇ G
∇ 2G
ΔG

div gradG

[∇ 2Gx ∇
2G y ∇

2G z]



  

PDE methods

● Linear elastic equation

External forces are balanced with internal forces

μ ∇ 2u+(μ+λ) ∇ ∇ ⋅ u+F= 0

External forceInternal force



  

PDE methods

● Linear elastic equation

External forces are balanced with internal forces

μ ∇ 2u+(μ+λ) ∇ ∇ ⋅ u+F= 0

Vector Laplacian = 
Second derivative



  

PDE methods

● Example in 1D

u= x2

∇ 2u= 2



  

PDE methods

● Linear elastic equation

External forces are balanced with internal forces

μ ∇ 2u+(μ+λ) ∇ ∇ ⋅ u+F= 0

Gradient of 
divergence



  

PDE methods

● Example

∇ ⋅ u= 0∇ ⋅ u= 0 ∇ ⋅ u>0

∇ ∇ ⋅ u is high



  

PDE methods

● Example

∇ ⋅ u= 0∇ ⋅ u= 0 ∇ ⋅ u= 0



  

PDE methods

● Linear elastic equation

μ ∇ 2u+(μ+λ) ∇ ∇ ⋅ u+F= 0

Lamé's parameters



PDE methods

● External Forces

F1 F2

Forces defined by similarity metric
(e.g. SSD)

Zero force on F1
Negative force on F2

(for moving image)Fixed

Moving



PDE methods

● External Forces

F1 F2

Forces defined by similarity metric
(e.g. SSD)

Zero force on F1
Negative force on F2

(for moving image)Fixed

Moving



PDE methods

● Relation between PDE and regularization 
penalty



PDE Algorithm

● For each iteration k

– Compute forces, e.g.

– Solve PDE
● SOR, Multigrid, etc

Fk=( f −m∘t ) ∇m



Diffeomorphic methods

● Diffeomorphic: smooth with smooth inverse

● This result is not diffeomorphic



Diffeomorphic methods

● Define a velocity field

● Transformation is integral of velocity field



Diffeomorphic methods

● Let      be time

● Let             be a (stationary) velocity field

● Then

● But x varies over time, so:

τ
v (x )

v (x ) = d u( x )
d τ

v (t ( x , τ )) = d t ( x , τ)
d τ



Diffeomorphic methods

● The solution to the ODE is an exponential

u = exp (v )



Diffeomorphic methods

● Exponentiation algorithm (Vercauteren 08)

● Based on property 

1. Choose N such that                is small

2. Take single integration step

3. Perform N recursive compositions 

exp ((a+b ) t)=exp (at )∘exp (bt)

2−N v
u←2−N v

u←u∘u



Diffeomorphic demons

● Initialize v to zero

● For each iteration k

– Compute update field on v 

– Compute
 

– Smooth u with Gaussian

vk=vk−1+
( f −m∘t ) ∇m

( f −m∘ t )2+‖∇m‖2

uk=exp (vk )



Fluid methods

● Linear elastic and diffusion regularizers  
penalize curvature of displacement field
(or velocity field)

● Fluid methods allow large deformations by 
removing this penalty



Fluid demons

● Initialize u to zero

● For each iteration k

– Compute update field on u 

 

– Smooth d with Gaussian

–

dk=
( f −m∘ t) ∇m
(f −m∘ t)2+‖∇m‖2

uk=uk−1+dk



  

What did we learn?

● Review of multivariate calculus

● PDE methods

● Diffeomorphic methods

● Fluid methods
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