
  

Deformable Image Registration
Part 1

Gregory C Sharp
Massachusetts

General Hospital

MASSACHUSETTS
GENERAL HOSPITAL

RADIATION ONCOLOGY



  

Preliminaries

● Transformation is defined on fixed image

– A.k.a. Reference image, static image

● Transformation maps fixed image to moving 
image

– A.k.a. Test image, target image



  

Preliminaries

● Transform vs. Displacement Field

– “Vector field” or “Deformation field” usually refers to 
displacement field

– t is the transform

– u is the displacement

t (x )=x+u (x )



  

Fixed Image

Moving Image

Preliminaries

u (x )=[−0.2,0.6]



  

Fixed Image

Moving Image

Preliminaries

t (x )=[0, 0 ]+[−0.2, 0.6]



  

Preliminaries

● Image warping by “pulling”

Fixed Image

Moving Image



  

Preliminaries

Fixed Image

Moving Image

w ( x)=m(t ( x ))

Notation:
f = fixed image intensity
m = moving image intensity
w = warped image intensity



  

Preliminaries

● Could we “push”?

Fixed Image

Moving Image

w ( x)= f (t−1(x ))



  

Preliminaries

● Could we “search”?

Fixed Image

Moving Image

w ( x)= f (t−1(x ))



  

Quadratic Error Function

● Consider a single voxel in 1-D

x

intensity

m(x)

f(x)



  

Quadratic Error Function

● If m is a linear function, we can compute u

x

intensity

m(x+u)

f(x) - m(x)

s= dm
dx



  

Quadratic Error Function

● “SSD” or “MSE” error function for a single voxel

C (u ) = ‖f (x )−m(x+u)‖2

= ‖f (x )−(m(x )+u s)‖2

=‖( f (x )−m(x ))−u s‖2

= ‖e−us‖2



  

Quadratic Error Function

● Calculate derivative

● Setting derivative to zero yields

dC
du

= d
du
‖e−us‖2

= −2e s+2u s2

⇒u=e /s



  

Quadratic Error Function

● In one dimension

● In two or three dimensions

u (x )= f (x )−m( x )
dm/dx

u (x ) = f ( x )−m( x)
∇m

→ ( f ( x )−m(x )) ∇m
‖∇m‖2



  

Notational Convenience

● We'll drop the spatial location x when possible

● Use operator notation for image warping

u= (f −m) ∇m
‖∇m‖2

m∘ t (x ) ≝ m( t (x ))



  

DIR Algorithm “A-1”

● Let

u= (f −m) ∇m
‖∇m‖2

Is this a good algorithm?



  

DIR Algorithm “A-2”

● Let u = 0
● For each iteration k

uk=uk−1+
( f −m∘ t )∇m
‖∇m‖2

Is this a good algorithm?



  

DIR Algorithm “B-1”

● For each x in domain of f

– Find u that minimizes

‖f (x )−m(x+u)‖2

Is this a good algorithm?



  

DIR Algorithm “B-2”

● For each x in domain of f

– Find u that minimizes

subject to

‖f (x )−m(x+u)‖2

‖u‖2<ω

Is this a good algorithm?



  

Demons algorithm

● Stabilized step size

The denominator can still be unstable, but only 
when               and 

uk=uk−1+
( f −m∘ t )∇m

( f −m∘ t )2+‖∇m‖2

f ≈m∘ t ∇m≈0



  

DIR Algorithm “Demons”

● Let u = 0
● For each iteration k

– Let 

– Smooth u with Gaussian filter

What are the salient features of this algorithm?

uk=uk−1+
( f −m∘ t )∇m

( f −m∘ t )2+‖∇m‖2



  

DIR Algorithm “Demons”

● Some salient features

– Easy to implement

– Each iteration is fast

– Many iterations may be required
● Small step size
● Smoothing operation acts as diffusion

– Very flexible
● Step size and smoother can be modified

– Difficult to understand the metric being minimized



  

Symmetrized Step

● Why not use gradient of f ?

x

intensity
f (x)



  

Symmetrized Step

● Could be useful when dm/dx ~ 0
or df/dx does not agree with dm/dx

x

intensity
f (x)

( f −m) ∇m
‖∇m‖2

( f −m) ∇ f
‖∇ f ‖2



  

Vector Field Jacobian

● In order to achieve a symmetrized step, we 
must use the Jacobian.

● Let 

● The Jacobian of t is

t=[ t x , t y , t z]

Jac (t )=[ dt xdx dt x
dy

dt x
dz

dt y
dx

dt y
dy

dt y
dz

dt z
dx

dt z
dy

dt z
dz
]



  

Vector Field Jacobian

● Let us investigate a 2D example.
The center of the grid is location (0,0).
The current value of t is [ -y, x ]  

f m-1     0      1

-1     0      1

-1     0      1

-1    -1     -1

-2    -2     -2

0     0      0



  

Vector Field Jacobian

f

m

-1     0      1

-1     0      1

-1     0      1

-1    -1     -1

-2    -2     -2

0     0      0

t=[− y , x ] m∘ t

 0,-1     0,0      0,1

 1,-1     1,0      1,1

-1,-1    -1,0     -1,1

-2    -1      0

-2    -1      0

-2    -1      0

∇ f

 1,0      1,0      1,0

 1,0      1,0      1,0

 1,0      1,0      1,0



  

Vector Field Jacobian

● At location (0,0), we have

● This is the correct direction in          but not m

( f −m∘t ) ∇ f
‖∇ f ‖2 = (0−(−1)) [1,0 ]

1
= [1,0]

m∘ t



  

Vector Field Jacobian

● To find the direction in m, we calculate in the 
coordinate system of m

● By the chain rule, we have

● And by the inverse function theorem

( f −m∘t ) ∇ f
‖∇ f ‖2 → (f ∘ t

−1−m)∇ ( f ∘ t−1)
‖∇ ( f ∘ t−1)‖2

∇( f ∘ t−1)=∇ f ∘ Jac (t−1)

Jac (t−1)=Jac−1 (t )



  

Vector Field Jacobian

● Therefore, for t = [ -y, x ]

Jac (t ) =[ dt xdx dt x
dy

dt y
dx

dt y
dy
]=[0 −1

1 0 ]
Jac (t−1) =[ 0 1

−1 0]
∇( f ∘ t−1) = [1,0 ][ 0 1

−1 0]= [0,1]



  

Vector Field Jacobian

f

m

-1     0      1

-1     0      1

-1     0      1

-1    -1     -1

-2    -2     -2

0     0      0

t=[− y , x ] m∘ t

 0,-1     0,0      0,1

 1,-1     1,0      1,1

-1,-1    -1,0     -1,1

-2    -1      0

-2    -1      0

-2    -1      0

∇ f

 1,0      1,0      1,0

 1,0      1,0      1,0

 1,0      1,0      1,0

∇ f ∘Jac ( t−1)

 0,1      0,1      0,1

 0,1      0,1      0,1

 0,1      0,1      0,1



  

What have we learned?

● Warping based on “pulling”
● Quadratic image cost function (SSD)
● Use of image gradient to find correspondences
● Stabilized step length
● Demons algorithm
● How to use Jacobian matrix
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