

Deformable Image Registration
Part 1

Gregory C Sharp
Massachusetts

General Hospital

MASSACHUSETTS
GENERAL HOSPITAL

RADIATION ONCOLOGY

Preliminaries

● Transformation is defined on fixed image

– A.k.a. Reference image, static image

● Transformation maps fixed image to moving
image

– A.k.a. Test image, target image

Preliminaries

● Transform vs. Displacement Field

– “Vector field” or “Deformation field” usually refers to
displacement field

– t is the transform

– u is the displacement

t (x)=x+u (x)

Fixed Image

Moving Image

Preliminaries

u (x)=[−0.2,0.6]

Fixed Image

Moving Image

Preliminaries

t (x)=[0, 0]+[−0.2, 0.6]

Preliminaries

● Image warping by “pulling”

Fixed Image

Moving Image

Preliminaries

Fixed Image

Moving Image

w (x)=m(t (x))

Notation:
f = fixed image intensity
m = moving image intensity
w = warped image intensity

Preliminaries

● Could we “push”?

Fixed Image

Moving Image

w (x)= f (t−1(x))

Preliminaries

● Could we “search”?

Fixed Image

Moving Image

w (x)= f (t−1(x))

Quadratic Error Function

● Consider a single voxel in 1-D

x

intensity

m(x)

f(x)

Quadratic Error Function

● If m is a linear function, we can compute u

x

intensity

m(x+u)

f(x) - m(x)

s= dm
dx

Quadratic Error Function

● “SSD” or “MSE” error function for a single voxel

C (u) = ‖f (x)−m(x+u)‖2

= ‖f (x)−(m(x)+u s)‖2

=‖(f (x)−m(x))−u s‖2

= ‖e−us‖2

Quadratic Error Function

● Calculate derivative

● Setting derivative to zero yields

dC
du

= d
du
‖e−us‖2

= −2e s+2u s2

⇒u=e /s

Quadratic Error Function

● In one dimension

● In two or three dimensions

u (x)= f (x)−m(x)
dm/dx

u (x) = f (x)−m(x)
∇m

→ (f (x)−m(x)) ∇m
‖∇m‖2

Notational Convenience

● We'll drop the spatial location x when possible

● Use operator notation for image warping

u= (f −m) ∇m
‖∇m‖2

m∘ t (x) ≝ m(t (x))

DIR Algorithm “A-1”

● Let

u= (f −m) ∇m
‖∇m‖2

Is this a good algorithm?

DIR Algorithm “A-2”

● Let u = 0
● For each iteration k

uk=uk−1+
(f −m∘ t)∇m
‖∇m‖2

Is this a good algorithm?

DIR Algorithm “B-1”

● For each x in domain of f

– Find u that minimizes

‖f (x)−m(x+u)‖2

Is this a good algorithm?

DIR Algorithm “B-2”

● For each x in domain of f

– Find u that minimizes

subject to

‖f (x)−m(x+u)‖2

‖u‖2<ω

Is this a good algorithm?

Demons algorithm

● Stabilized step size

The denominator can still be unstable, but only
when and

uk=uk−1+
(f −m∘ t)∇m

(f −m∘ t)2+‖∇m‖2

f ≈m∘ t ∇m≈0

DIR Algorithm “Demons”

● Let u = 0
● For each iteration k

– Let

– Smooth u with Gaussian filter

What are the salient features of this algorithm?

uk=uk−1+
(f −m∘ t)∇m

(f −m∘ t)2+‖∇m‖2

DIR Algorithm “Demons”

● Some salient features

– Easy to implement

– Each iteration is fast

– Many iterations may be required
● Small step size
● Smoothing operation acts as diffusion

– Very flexible
● Step size and smoother can be modified

– Difficult to understand the metric being minimized

Symmetrized Step

● Why not use gradient of f ?

x

intensity
f (x)

Symmetrized Step

● Could be useful when dm/dx ~ 0
or df/dx does not agree with dm/dx

x

intensity
f (x)

(f −m) ∇m
‖∇m‖2

(f −m) ∇ f
‖∇ f ‖2

Vector Field Jacobian

● In order to achieve a symmetrized step, we
must use the Jacobian.

● Let

● The Jacobian of t is

t=[t x , t y , t z]

Jac (t)=[dt xdx dt x
dy

dt x
dz

dt y
dx

dt y
dy

dt y
dz

dt z
dx

dt z
dy

dt z
dz
]

Vector Field Jacobian

● Let us investigate a 2D example.
The center of the grid is location (0,0).
The current value of t is [-y, x]

f m-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

-2 -2 -2

0 0 0

Vector Field Jacobian

f

m

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

-2 -2 -2

0 0 0

t=[− y , x] m∘ t

 0,-1 0,0 0,1

 1,-1 1,0 1,1

-1,-1 -1,0 -1,1

-2 -1 0

-2 -1 0

-2 -1 0

∇ f

 1,0 1,0 1,0

 1,0 1,0 1,0

 1,0 1,0 1,0

Vector Field Jacobian

● At location (0,0), we have

● This is the correct direction in but not m

(f −m∘t) ∇ f
‖∇ f ‖2 = (0−(−1)) [1,0]

1
= [1,0]

m∘ t

Vector Field Jacobian

● To find the direction in m, we calculate in the
coordinate system of m

● By the chain rule, we have

● And by the inverse function theorem

(f −m∘t) ∇ f
‖∇ f ‖2 → (f ∘ t

−1−m)∇ (f ∘ t−1)
‖∇ (f ∘ t−1)‖2

∇(f ∘ t−1)=∇ f ∘ Jac (t−1)

Jac (t−1)=Jac−1 (t)

Vector Field Jacobian

● Therefore, for t = [-y, x]

Jac (t) =[dt xdx dt x
dy

dt y
dx

dt y
dy
]=[0 −1

1 0]
Jac (t−1) =[0 1

−1 0]
∇(f ∘ t−1) = [1,0][0 1

−1 0]= [0,1]

Vector Field Jacobian

f

m

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

-2 -2 -2

0 0 0

t=[− y , x] m∘ t

 0,-1 0,0 0,1

 1,-1 1,0 1,1

-1,-1 -1,0 -1,1

-2 -1 0

-2 -1 0

-2 -1 0

∇ f

 1,0 1,0 1,0

 1,0 1,0 1,0

 1,0 1,0 1,0

∇ f ∘Jac (t−1)

 0,1 0,1 0,1

 0,1 0,1 0,1

 0,1 0,1 0,1

What have we learned?

● Warping based on “pulling”
● Quadratic image cost function (SSD)
● Use of image gradient to find correspondences
● Stabilized step length
● Demons algorithm
● How to use Jacobian matrix

	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

