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Proton Transport in a Water Tank

In this Monte Carlo simulation we let a perfect beam enter a water tank. The projection on

the yz plane (side view) is shown here, with the transverse scale greatly exaggerated. We

ran 20K tracks, plotting the first 30 and after that, only tracks that happened to pass

through a narrow off-axis slit. The angular spread of those protons is less than the gross

angular spread, and they appear to come from a virtual source somewhat downstream of

the entrance face. Transport theory predicts these and related quantities.

Transverse scale

is exaggerated!



What is Transport Theory ?

To generate the previous slide we simulated 20K proton histories. We divided the water

tank into fairly thin slabs. We started each proton traveling along the axis. Given the

proton’s position, direction and energy (‘phase space variables’) entering a slab, we

choose at random new values of position, direction and energy leaving the slab from

probability distributions consistent with theories of stopping and multiple scattering.

We repeat that until the proton stops. Then we do the next proton.

That method is called a ‘condensed history’ Monte Carlo. (It imitates nature slab by slab

rather than at the atomic level, which would take far too long.) Monte Carlo programs

can be used in very complicated geometries where analytic methods need inadmissible

approximations. However, it takes a very long time to get accurate results.

Transport theory does not work proton by proton. Instead, it characterizes the entire

cohort of protons by a few (typically 7) parameters and computes the evolution of

those parameters through the slabs. This only works in simple situations, but when it

does it is faster by many orders of magnitude.

Finding the transverse penumbra of a proposed beam spreading system is a typical

problem that can be solved either with MC simulation or analytically. The solutions

agree fairly well with each other, and with experiment. One advantage of the analytic

approach is that it may yield insights that are useful in design work. That is true of the

penumbra problem.



Model Beam for Phase Space Discussion

Because scattering and motion (drift) go on simultaneously in a water tank, let’s

look at a beam line which is simpler for pedagogical purposes: 3 scatterers

separated by voids or drifts, then a collimator and a final void. In this case we have

chosen to put a pinhole or slit on the beam axis.

Next we’ll define ‘phase space variables’, a 2D ‘phase space diagram’, and see how

the diagram changes in a scatterer or a void. (In practice, air acts pretty much like

a void. Only rarely do we have to account for scattering or energy loss in air.)



Our ‘side view’ slide gives a good feeling for what goes on in a thick slab but does

not provide a good basis for quantitative calculations. That is provided by the

phase space picture of beam transport. Phase space diagrams and ellipses are

commonplace in accelerator design but much less so when discussing scattered

beam lines, so we’ll explain the idea in some detail.

The phase space variables of a proton at a particular level (z) in the beam are

x x′    y y′    T

the positions, slopes and kinetic energy. (In small angle approximation the slopes

equal the angles.) To transport the beam through a given beam element is to find

the outgoing phase space variables given the incoming ones.

Often it is convenient to use a quantity other than T, for instance momentum or

residual range in water, as the ‘longitudinal’ variable. T does not appear explicitly

in the phase space diagram but we need to remember that (whatever variable we

use) it decreases as z increases until the proton stops. The scattering power of a

given slab is greater if T or its proxy is smaller.

A 2D phase space diagram is a scatter plot of x′ vs. x . As long as only

scatterers and drifts are involved, y′ vs. y behaves the same way and need not

be drawn.

The Phase Space Picture



This phase space diagram shows only four protons. As protons move through the

scatterer (left diagram to right) each protons receives a random vertical kick. The

size of the kick obeys a Gaussian distribution whose characteristic width (θ0 )

depends on the scatterer strength as given by Highland’s formula or (slightly

better) Hanson’s formula.

N.B. the phase space diagram is emphatically not a picture or cross section of

the beam as we might get on film ! That would be a scatter plot of y vs. x.

The Effect of  a Scatterer
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By contrast, in a pure drift the phase space distribution shears. Protons

above the x axis move right, protons below move left, and protons on

the axis stay where they are. Think of laminar flows in phase space.

The Effect of  a Drift



As we’ll see shortly, the phase space distribution representing the beam can be

bounded, at any given beam element, by an ellipse. The three ellipse parameters

(for instance, semi-axes and tilt angle) can be computed at any z by means of

transport theory. The area enclosed by the ellipse is π x′int xmax ( = π xint x′max )

and that (or sometimes area/π) is called the the beam emittance at that z.

x′int

xmax

The Beam Ellipse



Phase space area, or beam emittance, is conserved in a drift. That follows from

the previous formula for the area, plus the fact that ymax and xint do not change in

a drift. This is a specific instance of Liouville’s Theorem.

Liouville’s Theorem



Phase Space Summary

Phase space coordinates at z : x x′ y y′ T

Phase space diagram: scatter plot, at some z, of x′ vs. x

Thin scatterer : random ± vertical kicks, Gaussian, rms θ0.

Pure drift : phase space distribution shears.

(Thick scatterer : some of each.)

Phase space ellipse: encloses a collection of points in the phase

space diagram. In accelerator physics the bounding ellipse is an

approximation. In scattering systems it is exact, to the extent that

the Gaussian approximation applies.

Emittance ≡ ellipse area = π x′int ymax = π y′int xmax . Conserved in a

pure drift, and obviously not conserved in a scatterer.

The evolution of the beam ellipse (its 3 parameters) with z can be

computed using transport theory: Fermi-Eyges or an equivalent.



Phase Space Evolution of  the Model Beam 

At last we’re able to trace the evolution of phase space in our beam consisting of three

scatterers S separated by voids V followed by a collimator C :

The next slide shows the phase space cloud at the entrance to each element. We’ve given

the incident beam a little size and angular spread to make it more visible. S1 spreads it

vertically. V1 shears it without changing the area. But S2 changes the area significantly.

Continuing in that vein, a bounding ellipse is shown at the entrance to C. The pinhole

selects a strip whose half-height is proportional to the angular spread on axis. These

diagrams demonstrate that the increase in emittance at a scatterer is proportional to the

beam size entering that scatterer, a key consideration in minimizing lateral penumbra.

angular 

confusion





From 1M events we selected ≈ 30 that passed through 2 mm pinholes at the upper and

lower collimator edges. The angular confusion is obviously related to the size of the

beam at S2. Also, the ray bundles appear to point back to a well defined virtual source

with a finite size. Computation shows it is about halfway between S1 and S2

The next two slides anticipate the lecture on lateral penumbra. The beam line (uniform

scatterer S1, contoured scatterer S2, collimator, water tank) models the NPTC gantry.

A More Interesting Beam Line
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Fermi-Eyges Theory

Fermi-Eyges theory propagates the parameters of the beam ellipse through matter.

Originally (L. Eyges, Phys. Rev. 74 (1948) 1534-1535) it assumed an ideal beam into

a single homogeneous slab, and it used a particular formula (our TFR) for the

scattering power. Later it was generalized to any Gaussian incoming beam, a ‘stack’

of uniform slabs, and other scattering powers. However, transverse heterogeneity is

not allowed or equivalently, the unknown beam at z must still be Gaussian. That

means the theory does not apply to most beam lines, and even less to dose

reconstruction in the patient. However, it is still worth learning because it is used as

a building block in more complicated computations.



Scattering Power
T is defined as the rate of increase of mean squared projected MCS angle:

It is the topic of the next lecture. There are presently 6 different formulas, including

TdM suggested recently by BG (Med. Phys. (2010), in press). Any accurate formula

consists of three factors: material dependent, energy dependent, and a single scattering

correction.

Scattering length XS is a property of the current material. lg ≡ log10 .Other symbols

are defined in the next lecture. The main thing is that if you know where you are in

the stack (z) and what the incident energy was, you can compute the number T.

Compounds or mixtures:



Moments of  T

The moments of the scattering power An , as well as a special combination B, play a

central role in Fermi-Eyges theory. u is a z-like variable representing distance along

the slab or stack of slabs. In T(u) it is a sort of bookkeeping tool. T depends upon

a number of things such as kinetic energy and scattering material, and these in turn

depend on where we are in the stack. We will need some subroutine which knows

the construction of the stack and the incoming energy, and can therefore return the

needed quantities when called with a specific value of u: WhatsHere(u, ...) .



Probability Density in Phase Space

The main result of Fermi-Eyges theory (L. Eyges, loc. cit.) is the probability, at any

z > 0 , of finding a proton at x in dx and θ in dθ if it enters a single slab along the

z axis at z = 0:

P itself is the 2D probability density in phase space. Everything flows from this

equation. If we multiply by N, the number of protons in the beam, we obtain the

number density in phase space. By generalizing the A’s we can apply the equation

to a non-ideal (but known) incident beam and mixed slabs.

If we set the second fraction in the exponent equal to one we obtain the iso-

probability contour at 61% of the central intensity:

which, according to the analytic geometry of conic sections, is an ellipse since it

can be shown that B > 0. This gives quantitative meaning to the beam ellipse.



Physical Interpretation of  the A’s

One can relate the A’s to mean values of the phase space variables at z. We give the

formulas here without proof. The square roots of A0 and A2 respectively define

the bounding box of the ellipse in θ and x , or the rms values of θ and x. A1 is

more subtle. It is the covariance of x and θ, related to the tilt of the ellipse. If A1 > 0

(θ generally increases with x) the beam is divergent.

It can be shown that B ≡ A0A1 – A2
2 ≥ 0 . Therefore its square root is real, and one

can show that πB1/2 is the area enclosed by the beam ellipse: the beam’s emittance at

z. A0 , A2 and B form an alternative set of ellipse parameters. A1 carries a bit more

information than B, namely which way the ellipse is tilted, but in scatter/drift

systems the ellipse always tends towards quadrants 1 and 3 : the beam ultimately

diverges. Only with magnets can we make converging beams.



area enclosed = π B½ = π (A0 A2 – A1
2)½

Beam Ellipse in An Notation

x (cm)

θ (rad)

A0
½

A2
½

(B/A2)
½

(B/A0)
½
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A1/A0
½

A1/A2
½

OR = most probable θ given  x ,  θ = (A1/A2) x

OQ = most probable x  given  θ ,  x = (A1/A0) θ



area enclosed = π (<θ2><x2> - <xθ >2)½

Beam Ellipse in x, θ Notation

x (cm)

θ (rad)

<θ2>½

<x2>½

<θc
2>½

<xeff
2>½



Propagation of  A’s in Mixed Slabs

The computation of the scattering power moments A can be generalized to the case

where the entering values are not 0 (imperfect beam). Assume the slab extends from

0 to z , the unprimed A’s are initial values and the primed A’s are final values. Then

This process can be repeated as often as necessary, so we have a formalism for

propagating the beam ellipse through a mixed finite slab geometry.

If the initial A’s are 0, these equations are identical to the original theory by

inspection. If T is zero (no scattering in 0 – z, pure drift) it is easy to show that the

equations lead to ΔB = 0 : no emittance change in a drift.



Emittance Increase in a Scatterer

Suppose a beam line consists of thin scatterers separated by drifts. The propagation

of A’s through a given scatterer can then be approximated by

To lowest order in z

or

In other words, Fermi-Eyges theory is consistent with our guess that the emittance

increase in a scatterer equals the incident rms beam size times the change in rms

scattering angle. At the end of a beam line having N scatterers

which leads to a formula for the angular confusion θC , which in turn we need to

compute transverse penumbra.



Stepwise Propagation of  A’s

Sometimes (as when reconstructing dose in a patient) we discretize the

inhomogeneities and do Fermi-Eyges theory step by step. The following

compact form (N. Kanematsu, Nucl. Instr. Meth. B 266 (2008) 5056-5062) is

easily derived from the integral version by assuming T is constant within Δz :

denotes T at the midpoint of the step. These equations are equivalent to

integration by the midpoint rule and only work well if Δz is small.



Example: Stopping-Length Water Slab

A 127 MeV proton pencil beam enters a near stopping length (z = 0.97 R1) slab of

water divided into five equal slabs. The bounding box of the final ellipse is shown. It

agrees with a measurement (dashed lines) of the rms projected transverse spread by

Preston and Koehler (unpublished MS (1968) HCL).



Example: Pb/Lexan/air stack

A 230 Mev proton beam enters a Pb/Lexan/air stack typical of one position of the

range modulator (and drift space to the second scatterer) of the IBA radiotherapy

nozzle. The Pb is an almost pure scatterer. The Lexan shows some scatter and some

drift. The air (here divided into 3 equal slabs) is an almost pure drift.



Equivalent Sources

Frequently, particularly in beam line design, we need to replace a subsystem (a stack

of mixed slabs) by an ‘equivalent source’. For instance, each position of a range

modulator looks (to the second scatterer S2) like a given Pb/Lexan/air stack. After

taking multiple scattering in the stack into account, where exactly do the protons

seem to be coming from? This is particularly important if the modulator takes up

most of the space upstream of S2. Three ways of computing an equivalent source

and its distance from the arbitrary measuring plane (MP) are found in the literature:

The ‘effective extended source’ is that erect upstream ellipse which would drift into

the observed ellipse at zMP (ICRU Report 38, 1984).

The ‘virtual point source’ is that erect degenerate upstream ellipse which would yield,

at zMP, the same most probable direction as a function of x (ibid.).

The ‘effective scattering point’ is that point from which, if zMP is far downstream,

protons at xrms appear to be coming (Gottschalk et al., Nucl. Instr. Meth. B74

(1993) 467-490).

Exactly which one to use in a particular case is a bit of a mystery even to us; we have

generally used the last one. However it is easy to show that the differences between

the three source distances are usually small in practice.



Effective Extended Source
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The ‘effective extended source’ is that ellipse which would drift into the given ellipse

at the MP. Since there are infinitely many, we also require that it be erect. The drift

distance of a general phase space point (x,θ) from an initial (0,θ) is S = x/θ .

Applying that to point Q we find

Seff = A1/A0 or    zeff = zMP – A1/A0 .

Point S does not move in a drift so the source size is xrms, eff = (B/A0)
1/2 .

A1/A0
½



Virtual Point Source

O

R

O

svir

R A1/A2
½

A2
½

The ‘virtual point source’ is that ellipse which drifts into OR, the locus of the most

probable proton direction given x. Reasoning as before

Svir = A2/A1    or zvir = zMP – A2/A1

The VPS is the point from which protons appear to emanate: xrms,vir = 0



Effective Scattering Point

Gottschalk et al., Nucl. Instr. Meth. B74 (1993) 467-490 defined an equivalent source

distance using the back projected asymptote of xrms(z), which Kanematsu (Phys. Med.

Biol. 54 (2009) N67-N73) calls the ‘effective scattering point’. It can be identified with

the upper right hand corner of the bounding box after a long drift, whence

Sesp = (A2/A0)
1/2 or zesp = zMP – (A2/A0)

1/2

Recalling S = x/θ it is obvious from the general ellipse diagram that

Svir > Sesp > Seff or    zvir < zesp < zeff

In most practical cases the three are very close together and any can be used.



The STAR neurosurgery beam at the Burr Center uses ‘lamination’, a sequence of

lead or plastic scatterers chosen from binary sets, to create the SOBP. The z of each

scatterer is fixed so zesp (full squares) jumps around, by as much as a few cm at the

major transition, as we go through the sequence. Left uncorrected, that would cause

a 1/r2 bump in the SOBP. The observed SOBP is flat, showing this effect is handled

adequately by the computer program. The long throw (4.5m) helps a lot.

Effective Scattering Point (Mixed Slabs)



The equivalent source idea also applies to non-uniform slabs but we must choose

an equivalent thickness for the non-uniform slab. For a compensated contoured

scatterer, its thickness at xrms (from the elements upstream) is a reasonable choice

and seems to give the right answer (lecture on transverse penumbra).

The virtual source is computed by functions Zeff1 (single scatterer), Zeff6 (S1 in

NEU geometry) and Zeffn (general case), all located in module TOUT.FOR .

Effective Scattering Point (Non-Uniform Slabs)



Alternative Derivation of   xrms(z)

dxdθ

MP

du z2z1 z

(Δz)1 (Δz)2

Preston and Koehler (1968) used this construction. Scatters from each element du,

projected onto an arbitrary measuring plane, add in quadrature. If we use Highland’s

formula with the log correction for each slab taken out of the integral we find

which is very similar in form to the Fermi-Eyges moment A2 . This formula is the

basis for our subroutine Rch (‘characteristic radius’) in module TOUT.FOR. .



Experimental  xrms(z)

Gottschalk et al., NIM B74 (1993) 467-490 Figure 5a: spreading of a pencil beam in a

thick homogeneous target: (rms radius)/(max rms radius) v. (depth in target)/(initial

mean range). Data points are measurements of Preston and Koehler for 112 and 158

MeV protons in aluminum and 127 and 134 MeV protons in water. The line represents

the formula of the previous slide. It is indistinguishable from the analytic approximation

of Preston and Koehler based on the ‘ICRU35’ scattering power.



Summary

The phase space picture is a useful way to visualize beam propagation in a system of

scatterers and drifts.

Fermi-Eyges theory is a quantitative description of beam propagation in such a

system. It has been generalized to mixed slab geometry, in which each slab is

homogeneous and infinite in the transverse coordinates x and y. In that case the 1/e

probability density contour in x , x′ space (phase space) is an ellipse described by three

parameters A0 , A1 and A2 . These may be computed: they are simply the moments of

scattering power namely T(z) ≡ d<θ2>/dz .

Scattering power is a complicated concept since, even when energy loss is negligible,

Δ<θ2> is not exactly proportional to scatterer thickness (next lecture).

Though Fermi-Eyges theory is derived by writing down and solving a differential

equation for the probability density in phase space, many of its results can be found

more directly. We have described these, and used them to write down an alternative

formula for the angular confusion in transverse penumbra problems.

The fundamental limitation of FE theory is that it deals only with Gaussian fluence

distributions and the fluence in any but the most trivial proton radiotherapy problems

is not Gaussian, due to transverse inhomogeneities or collimators. In practice, FE

theory or its equivalent is used to predict the properties of pencil beams which are

then combined to describe the actual situation.


