
Bragg Peak

The Bragg peak, as we use the term, is the on-axis depth-dose distribution, in
water, of a broad quasi-monoenergetic proton beam. A carefully measured
Bragg peak is essential to accurate range modulator design.

Listing the most important factor first, the shape of the Bragg peak depends
on the fundamental variation of stopping power with energy, the transverse
size of the beam, range straggling, beam energy spread, nuclear interactions,
low energy contamination, effective source distance, and the dosimeter used in
the measurement.

Because of range straggling, the peak of the depth-dose distribution increases
in absolute width as beam energy increases.

Usually, the Bragg peak is measured with an uncalibrated dosimeter. In other
words, x values (depth in water) are known absolutely and rather accurately
but y values (dose) are relative.

To prepare such a measured Bragg peak for use in design programs we fit it
with a cubic spline, correct for the fluence at measurement time, and convert
y to absolute units, Gy/(gp/cm2). The last step, renormalization, allows
subsequent calculations to yield absolute dose estimates.
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Motivation

This figure shows schematically how we design a range modulator by adding

appropriately weighted Bragg peaks. To be successful we need to measure

the Bragg peak accurately and under the correct conditions.
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1. The increase of dE/dx as the proton slows down causes the overall
upwards sweep.

2. The depth of penetration (measured by d80 ) increases with beam energy.

3. The width of the peak is the quadratic sum of range straggling and beam
energy spread.

4. The overall shape depends on the beam’s transverse size. Use a broad
beam.

5. Non-elastic nuclear reactions move dose from the peak upstream.

6. A short effective source distance reduces the peak/entrance ratio. Be
sure you know and record your source distance.

7. Low energy beam contamination (as from collimator scatter) may affect
the entrance region. Use an open beam.

8. The exact shape depends somewhat on the dosimeter used. Use the
same dosimeter you plan to use later in QA.

Anatomy of  the Bragg Peak in Words



This figure is a Monte Carlo calculation by Martin Berger (NISTIR 5226 (1993)).

Dashed line: nuclear reactions switched off; solid line: actual BP. Buildup, not usually a

problem because of the likely presence of buildup material near the patient, is ignored.

Dose from the EM peak shifts upstream, lowering the peak and flattening the entrance

region, especially at high proton energies. Because nuclear reactions are hard to model,

we take them into account by using a measured (rather than predicted) Bragg peak to

deduce an effective stopping power which includes nuclear reactions.

Effect of  Nonelastic Nuclear Reactions



The ‘local energy deposition’ approximation fails at the entrance to a water tank where

longitudinal equilibrium has not yet been reached. You can see this if you measure a

Bragg peak vertically so that the proton beam enters from air. This scan, courtesy of

IBA, is from the Burr Center. An excellent early paper is Carlsson and Carlsson,

‘Proton dosimetry with 185 MeV protons: dose buildup from secondary protons

and recoil electrons,’ Health Physics 33 (1977) 481-484. It also discusses the (much

more rapid) electron buildup. Observed nuclear buildup is smaller than one would

expect; that has not been explained so far. A therapy beam usually has buildup

material near the patient, so the effect shown above can be ignored.

Nuclear Buildup



Bragg peaks from 69 to 231 MeV (courtesy IBA) normalized so the entrance value

equals the tabulated dE/dx at that energy. Straggling width relative to range is almost

independent of energy so absolute straggling width increases with energy. Therefore the

Bragg peak gets wider. The change in shape makes active range modulation more

complicated than passive, where we simply ‘pull back’ a constant shape.

Bragg Peak Shape vs. Beam Energy



The fluence on the central axis of a pencil beam decreases with depth because of

out-scattering of the protons. The dose on axis (fluence × stopping power) therefore

goes down; the Bragg peak vanishes. A scan along the axis with a small ion chamber

would show this; a scan with a large one would not.

In a broad beam the axial fluence is restored by in-scattering from neighboring pencils

(transverse equilibrium). A scan along the axis with a small ion chamber will therefore

measure the ‘true’ Bragg peak. It is essential to use this ‘broad beam’ geometry if we

wish to use the measured Bragg peak to design range modulators.

Transverse Equilibrium



Behavior of the Bragg peak as the beam cross section is made smaller : W.M. Preston

and A.M. Koehler, ‘The effects of scattering on small protons beams,’ unpublished

manuscript (1968) Harvard Cyclotron Lab, available on BG Web site.

Transverse Equilibrium (Theory)



Hong et al. ‘A pencil beam algorithm for proton dose calculations,’ Phys. Med. Biol. 41

(1996) 1305-1330. Also shows low energy contamination by collimator-scattered protons.

Transverse Equilibrium (Experiment)



Dosimeter Response

(left) from H. Bichsel, ‘Calculated Bragg curves for ionization chambers of different

shapes,’ Med. Phys. 22 (1995) 1721. He compares the response of an ideal (‘point’) IC,

a plane-parallel IC (less peaked) and an exaggerated thimble IC (much less peaked).

The effect is geometric: the thimble samples protons with a spread of residual ranges.

(right) from A.M. Koehler, ‘Dosimetry of proton beam using small silicon diodes,’

Rad. Res. Suppl. 7 (1967) 53. Response is ≈8% higher than a PPIC in the Bragg peak

for the diode (long obsolete) used by Andy. Not all diodes behave this way. A diode

marketed by Scanditronix specifically for radiation dosimetry behaves very like a PPIC.



When you measure Bragg peaks for later use in modulator design:

• Use a broad beam (several cm). Check by moving axis.

• Use an open nozzle to avoid low-energy contamination.

• Know and record the effective source distance.

• Know and record the beam spreading system. 

• Know and record tank wall thickness and other depth corrections.

• If  beam energy spread is adjustable, use the clinical setting.

• Use the same dosimeter as you plan to use for clinical QA.

Tips for Measuring the Bragg Peak



Preparing the Bragg Peak for Use

Fit data with a cubic spline (BPW.FOR) to put the Bragg peak in a compact

standard form (e.g. IBA231.BPK). That also averages out the experimental noise.

Extrapolate to 0 cm H2O if desired.

Later, open the BPK file with:

CALL InitBragg(t1,0.,bl,x1,xl,xp,xh,xm,'\BGware\DATA\'//bf)

which does the following:

• stretches the peak (if desired) so d80 = xh corresponds to t1

• divides by fluence (1/r2) to yield an effective stopping power

• normalizes so entrance dE/dx = tabulated EM value

• returns various parameters of interest (xp, xh ...)

Subsequently, y = Bragg(x) will return the effective mass stopping power

S/ρ (Gy/(gp/cm2)) at depth x. On using the formula

D = Φ (S/ρ) = fluence × mass stopping power

the design program will get the absolute dose rate automatically.



Measured Bragg peak (courtesy IUCF) fit with a cubic spline (open squares). See

the description of BPW.FOR in the NEU User Guide NEU.PDF . This step puts

the Bragg peak in a compact standard form and averages over experimental noise.

Model Independent Fit with Cubic Spline



A standard Bragg peak (.BPK) text file consisting of an array of depths and a

corresponding array of relative dose points. The program that opens this file uses

the effective source distance to compute the relative fluence (1/r2) at Bragg

measurement time and correct for it. It also renormalizes the dose values so the

entrance dose corresponds to tabulated dE/dx, obtaining an absolute effective

mass stopping power expressed in Gy/(gp/cm2).

Output File from Fitting Program BPW



The Bragg peak is a depth-dose distribution taken under specific conditions. Beam

line design programs, generally speaking, compute proton fluence from multiple

scattering theory and need to use dose = fluence × stopping power to compute

the dose. Therefore we would like to derive from the measured Bragg peak an

effective mass stopping power (a function of equivalent depth in water) for that

particular cohort of protons. To do this we use the fundamental equation to define

d is depth in water, D(d) is the BP measurement and Φ(d) is the fluence at BP

measurement time. That can be approximated by 1/r2 if we know the source

distance. To distinguish the effective stopping power from tabulated stopping

powers we assign it the units Gy/(gp/cm2) (gp ≡ 109 protons).

The effective stopping power includes nuclear reactions, energy straggling, beam

energy spread and all other effects relevant to range modulator design. If you want,

you can just think of it as the Bragg peak corrected for 1/r2 at measurement time to

bring it into a standard form.

The Effective Mass Stopping Power



So far we only know the relative value of (S/ρ)eff : its shape as a function of d. If

we could somehow assign a rough absolute value to it our design program would

automatically predict the dose per incident (109) protons (gp) in a given beam line.

One way of doing this is to assume that the rate of energy loss at the BP entrance

point corresponds to the tabulated EM dE/dx at the incident energy T1. Performing

the required conversions we find that we should set

Renormalizing the Bragg Peak

where S/ρ on the RHS is the tabulated EM stopping power in MeV/(g/cm2). The

flaw in that reasoning is that, if the BP is measured under conditions of longitudinal

(nuclear) equilibrium, the dE/dx we assign to the entrance point should also include a

contribution from nuclear secondaries, a ≈10% effect. Because of the uncertainty in

the nuclear part (see Carlsson and Carlsson) we simply ignore it for now.

Alternatively, we might have renormalized S/ρ using the fact that the area under the

BP corresponds to T1. The flaw in that reasoning is that, while the average proton

certainly brings in T1 , it doesn’t deposit T1 in the water. A few percent (depending on

T1) is carried off by neutrons and photons. The tension between ‘entrance’ and ‘area’

normalization is discussed in extenso in our book. Since we only use it for dose-per-

proton estimates (never to determine the treatment dose) it doesn’t matter that much.

Gy/(gp/cm2)



Summary

We certainly understand the underlying physics (which we have outlined) of the

Bragg peak. In the past, the Bragg peak has been modeled numerically (Bichsel), by

Monte Carlo calculations (Berger, Seltzer and many others) and even analytically

(Bortfeld, Med. Phys. 24 (1997) 2024-2033). However, each of these methods

requires parameters that are not known a priori at a given accelerator and beam line.

They are, at a minimum, the exact range, the beam energy spread, and a parameter

characterizing low energy contamination or inelastic nuclear reactions.

In other words one cannot, without the aid of measurements, compute entirely

from first principles a Bragg peak accurate enough for modulator design. For that

reason we favor a direct model-independent characterization of the data by means

of a cubic spline fit. We have listed precautions to be observed when obtaining the

data.

We have also described how we prepare Bragg peak data for use in beam line

design programs, especially with a view to range modulator design. We fit the data

with a cubic spline, correct them for 1/r2 (the fluence at Bragg measurement time)

and renormalize them to create a function Bragg(depth) which can be used as an

effective mass stopping power for the relevant cohort of protons. Because it is

based on direct measurements it automatically includes all such effects as beam

energy width and nonelastic reactions.


