
Introduction

The cubic spline is a standard mathematical function commonly used

to interpolate a data set. (The spline is a pre-CAD draftsman’s tool

which can be bent into a smooth shape and subsequently holds that

shape.) This lecture breaks our policy of not covering merely

mathematical topics because we plan to use the cubic spline in a

number of ways, many not found in standard textbooks:

1. As an interpolating function (the normal use) in RANGE;

2. As a fitting function for pristine Bragg peaks (BPW);

3. As a fitting function for data sets with corners (FitDD);

4. As an adjustable smooth curve (contoured scatterer, NEU).

We will describe each of these applications in turn, beginning with a

reminder of the difference between interpolation and fitting. We will not

explain how to compute the polynomial coefficients that define a

given cubic spline. For that, we refer the student to Numerical Recipes.

In this example, five arbitrary points (defining four intervals) are joined by a cubic spline.

In each interval the four coefficients a...d are different. Their 16 values are fixed by
requiring that the curve pass through the points and that its slope be continuous at each point

(no ‘corners’). At each endpoint we must therefore either specify the first derivative (dashed

line) or require that the second derivative be zero (‘natural’ cubic spline, full line).

y = a + bx + cx2 + dx3

The solid circles are input data, intentionally noisy. The linear and cubic spline

interpolation lines pass through all the given points (illustrating a weakness of spline

interpolation). The bold line, however, is a cubic spline fit obtained by adjusting the

three points shown as hollow squares for least-squares deviation of the bold line

interpolating them (with a cubic spline) from the data points. You will argue

(correctly) that a low-order polynomial would do just as well here, but we will soon

see cases where any single polynomial ― even high order ― fails of a good fit.

Interpolation vs. Fitting

DIMENSION x(n),y(n),s(n)

DATA yp1,ypn/0.,1.E30/

...

i = InitSpline(n,x,y,s,yp1,ypn,xx,klo,khi)

...

ya = Spline(n,x,y,s,yp1,ypn,xa,klo,khi)

yb = Spline(n,x,y,s,yp1,ypn,xb,klo,khi)

This differs slightly from Numerical Recipes’ version. InitSpline sets up

scratch array s (second derivatives) to go along with given arrays x and y.

InitSpline does a fair amount of computation and should be invoked

only when the x, y table changes.

yp1 and ypn as given yield y′ = 0 at one end and y″ = 0 (‘natural’ boundary)

at the other (the non-physical value 1.E30 serving as a code here). The next

line sets ya to the value of the spline at an arbitrary xa and so forth.

One virtue of the cubic spline as a fitting function is that it extrapolates

reasonably well just outside the defined region whereas high order polynomials

tend to go berserk there.

SPLINE.FOR Implementation

We express the range-energy relation in any given material by cubic spline

interpolation of log(R) as a function of log(T), equivalent to using a variable

power law. Only 13 values need be entered from 0.1 to 1000 MeV and, as

the lower panel shows, the accuracy is ~0.1% from 3 to 300 MeV.

Example: Cubic Spline Interpolation (RANGE)

Bragg peaks are described by a cubic spline fit to measured data (BPW). The

adjustable points are the hollow squares. The lower panel shows the accuracy of

the fit. The left end (not measured because of wall thickness) is a guess obtained

by linear extrapolation. Bragg peaks are extremely hard to fit with polynomials!

Example: Cubic Spline Fit (BPW)

put a comment here ...

249.0 cm from source to Bragg peak

20 0.10000E+31 0.10000E+31 # pts, yp1, ypn

0.0000 2.1855 2.7645 3.1580 5.1416 6.8809 8.7197 cm H2O

11.8539 13.2038 14.3375 14.8641 15.1743 15.5595 15.7307

15.8623 15.9955 16.2209 16.3838 16.5357 16.7100

0.2824 0.2860 0.2870 0.2878 0.2954 0.3072 0.3217 rel dose

0.3732 0.4204 0.5041 0.5818 0.6669 0.8650 0.9784

0.9948 0.9272 0.5038 0.2085 0.0663 0.0065

The application using this file must be able to correct the Bragg peak to a

standard condition ― the depth-dose that would have been measured

under the same circumstances with an infinite source distance ― because

the source distance at ‘application time’ will usually not be the same as it

was at ‘Bragg measurement time’. To do this, the application needs to

know the effective source distance at Bragg measurement time.

BPW Standard Output File

Once the measured Bragg peak has been fit, the fit parameters (namely

the hollow squares of the previous slide) can be output in a standard

form. In this example only 20 output points are used to characterize 152

raw data points. The distilled version is actually better for most purposes

because experimental noise has been averaged out.

The hardest part of spline fitting is picking initial points. We don’t want uniform

spacing, because if we have enough points in the curvy parts we’ll have far too

many in the straight parts and the fit will start chasing noise. We project equally

spaced points onto a density function which varies most rapidly where the

absolute second derivative is greatest. See the FitDD User Guide for details.

smoothed 2nd derivative

density function

function to be fit

Choosing Initial Points for the Spline Fit

The ‘Broken Spline’ Fit

A broken spline is a set of N connected natural cubic splines, single valued and continuous

with a continuous first derivative except at the joints or ‘corners’. During optimization the

initial break points migrate to the true corners of the data set. This identifies points such as

B and C facilitating subsequent computation of such things as the 100% dose level and d80.

As the example shows, a natural cubic spline through 2 points (B and C) is a straight line.

See the User Guide to FitDD for details.

A 5-segment broken spline used to fit a transverse scan. The fitting process itself finds the

four corners (bold squares). That in turn makes it easy to define the 100% dose level or the

maximum dose yPeak and its position xPeak. Subsequently, the simple statement

xL90 = Rtfp (BSfunc, x1, xPeak, 0.9*d100, kErr)

serves to find the left-hand 90% point (by the method of False Position) because BSfunc

is a single continuous function valid over the entire transverse range.

The cubic spline is a handy universal adjustable smooth curve. Here it is used to represent

what will be, after optimization of the y’s, the generic recipe for a contoured scatterer. The
lower curve is a parametrization of the Siebers variant of the contoured scatterer. Contoured

scatterers are not Gaussian in profile! Alternative parametrizations of the profile are

possible: for instance, the Uppsala group uses a 9-segment distorted cosine curve.

The Cubic Spline as an Adjustable Smooth Curve

And here is the end product (to scale, thickness exaggerated). The profiles of

both the lead dome and the energy-compensating plastic plate are cubic splines

in thickness v. radius. For accuracy in compensation, far more points are used

here than were used in the definition and optimization of the generic shape.

A Compensated Contoured Second Scatterer

Summary

The cubic spline is a smooth function defined by the set of points through

which it passes plus a derivative condition at each end. In each interval it is a

cubic polynomial. Numerical Recipes explains how to find the polynomial

coefficients. Our routines InitSPLINE and SPLINE are implementations of

their method.

We use the cubic spline four ways:

1. As an interpolating function (RANGE);

2. As a fitting function, especially for Bragg peaks (BPW);

3. In a ‘broken spline’ version, as a fitting function (FitDD);

4. As a universal adjustable smooth curve (contoured scatterer, NEU).

The last three uses are uncommon. The cubic spline can have a complicated

shape even in a single interval and therefore permits an excellent model

independent fit to many kinds of data. A natural cubic spline between only

two points degenerates to a straight line, another useful property. Unlike high

order polynomials, the cubic spline can be made to extrapolate gracefully.

