Multiple Scattering
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When protons pass through a slab of material they suffer millions of collisions with
atomic nuclei. The statistical outcome is a multiple scattering angle whose distribution 1s
approximately Gaussian. For protons, this angle is always small so the projected
displacement in any measuring plane MP is also Gaussian. The width parameter of the
angular distribution i1s @, . The corresponding displacement, x,,, can easily be measured
by scanning a dosimeter across the MP. The task of multiple scattering theory is to
predict 6, given the scattering material and thickness, and the incident proton energy.



Moliere Theory

Many statistical processes obey the Central Limit Theorem: the random sum of
many small displacements 1s a Gaussian distribution. However, the displacements
must all be swal/ , in a sense that can be made mathematically precise. Scattering
from the screened Coulomb field of the atomic nucleus does not obey the CLT
because the single scattering cross section falls off only as 1/6%, too slowly.
Therefore the angular distribution i1s approximately Gaussian for small angles but
eventually tends to a ‘single scattering tail’ = 1/6%.

All this was well understood by many investigators who worked on multiple
scattering in the 1920’ and 30’s but it was Moliere who in 1947 published the
definitive theory, uniting the Gaussian region with the large-angle region in a
precise and elegant way. He computed the distributions of both the space and
projected angles for arbitrarily thick targets as well as compounds and mixtures, and
produced numerical results long before the general availability of digital computers.
His numerical evaluations were later improved somewhat by Bethe, who
considered the overall Moli¢re theory to be good to 1%.

His name notwithstanding, Moliere was German. In his first paper, he derives an
accurate formula for single scattering in the screened Coulomb field of the nucleus.
The second, which uses that formula to compute multiple scattering, was his
‘Habilitationsschrift’ (a published work that qualified one to join the faculty) at the
University of Tubingen. He thanks Prof. Heisenberg for his interest and advice.



An Early Measurement with Electrons
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Fi16. 3. Angular distribution of electrons from thick and thin
gold foils from 0° to 30°. The solid line represents the theory of
Moliére extrapolated through the region where his small and large
angle approximations give different values, The dotted lines at
small angles represent the continuation of the gaussians of Fig. 1.
At larger angles, the dotted line represents the single scattering

contribution.

Hanson et al., ‘Measurement of
multiple scattering of 15.7 MeV
electrons,” Phys. Rev. 84 (1951)
034-637  studied
scattering by thin and thick foils
of Be and Au. They also gave a
formula for computing the
width of the best Gaussian fit
to the exact theory (‘Hanson’s
formula’ below). Their overall

electron

measurements agree well with
Moliere not only in the small
angle (Gaussian) region but also
in the single scattering tail. The
theoretical transition between
the two regions was improved
by Bethe later on.



The First Measurement with Protons
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F16. 5. Comparison of experimental data from Fig. 3 with -
theory. The solid line represents a normalized Molidre function z:
(adjusted with only one parameter: the absolute cross section). %
The dotted line represents a Gaussian curve, the zero-order term =
of the Moli¢re function. ;
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H. Bichsel, ‘Multiple scattering
of protons’ Phys. Rev. 112
(1958) 182-185 bombarded
targets of Al, Ni, Ag and Au
with protons ranging from 0.77
to 4.8 MeV from a Van de
Graaff accelerator. His detector
was a tilted nuclear track plate.
He fitted his measurements
with the Moliere form at the
appropriate B, adjusting only
the characteristic angle 6,. The
results agreed with theory to
+5%. Bichsel went on to
become a leading expert in
range-energy and  straggling
theory and modeling the Bragg
peak.



Comprehensive Test of Moliere Theory
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Gottschalk et al., ‘Multiple
Coulomb scattering of 160
MeV protons, Nucl. Instr.
Meth. B74 (1993) 467-490.
Moliere theory predicts the
multiple  scattering  angle
correctly over the periodic
table, three decades of
normalized target thickness
and over two decades of
and

angle.  Compounds

mixtures (not shown) are
also covered. The theory has

no empirical parameters!
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‘But it’s in German!’

Although Molicre starts his paper by considering thin elementary targets,
presumably for clarity, he later covers thick scatterers as well as
compounds and mixtures. Both generalizations are very important for
proton beam line design and dose algorithms. Early workers in the field,
such as Bichsel and Scott, were well aware of these generalizations.

However, Bethe’s 1953 paper (in English) didn’t include those aspects. His
remark ‘Lewis® has shown how the energy loss can be taken into account

” seems odd because Moliere also shows it. In any event, Bethe was
interested in other aspects of the theory, and made a number of

improvements.

Some English-speaking readers apparently thought Bethe’s review was
comprehensive and assumed that Molicre theory only applied when the
energy loss was small. ‘Effective energy’ fixes were used. Moliere’s original
papers were always cited, of course!



Caveat Emptor

One of the limitations of the theory (indeed, in any
of the forms described above) is in the allowable values

of B. The quantity e® gives approximately the number of

collisions suffered by the particle in traversing the
foil”). Since the theory is statistical in nature, we cannot
expect it to represent the physical situation if the
number of collisions is less than about 10-20. Ifeb =15,
then b=2.7 and, from eq. (27), B = 4. Therefore, we
consider only cases for which B2 4. At the other
extreme, b (and, hence, B) increases with the thickness ¢

oi the scattering foil. In the theory, it 1s assumed that
the scattered particle does not undergo any energy loss
in a collision. Since energy is lost in each collision and
since the scattering cross section is a function of energy,
the theory becomes inaccurate if ¢ is large and the
particle loses too much energy in the foil. We adoptasa

reasonable criterion that the particle must lose less

than about 20%, of its initial energy in the foil. [In any,

event, the value of E that enters the calculation through
B, as in eq. (30), should be the mean energy in the foil,

i.e., E=E,,,—14E.] For most cases of interest, this
rastriction on ¢ limits the value of B to be less than
about 15.
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Nevertheless ...
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Moliere Theory

Ve 18 a characteristic single scattering angle:
o , Xy "'-.E
Xe = c3t/(pv)
B characterizes target thickness (long computation):
B oc log(t/mean range)

(s 18 analogous to Hy:
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The 2D probability density is:
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Hanson's expedient (1951):
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Physical Interpretation of B
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Moliere’s reduced target thickness B is proportional to the logarithm of the normalized
target thickness (t/range) as this graph (Gottschalk et al. 1992, Table 1) shows. The
constant of proportionality depends on the target material. Moliere’s b is identified by
him as the natural logarithm of the effective number of collisions in the target.



The Gaussian Approximation

In Moliére theory we first find, by a lengthy computation, a single scattering
parameter ¥ and a dimensionless target thickness parameter B. The quantity XC\/B,
a characteristic multiple scattering angle, is the scale factor in a PDF which consists
of three terms in powers of 1/B . The first is a Gaussian.

Hanson et al. (Phys. Rev. 84 (1951) 634) were the first to observe that the best
Gaussian approximation 1s obtained, not by retaining just Moliere’s first term, but
by using a Gaussian whose o is a bit narrower, 0, = XC\/(B-l.Z) . 'This approach still
requires the entire Moliere computation.

Later, V.L. Highland (NIM 129 (1975) 497-499) fitted Moli¢re/Bethe/Hanson
theory and found

o _ 141 MeV [T D e ( L ) o
0 = DU V In g 0810 T r a

This simple formula circumvents the Moli¢re calculation and is often used as a
proxy for Moliere theory in the Gaussian approximation. The scattering material is
entirely represented by its radiation length Ly , which we can look up or calculate
from the chemical composition. Highland’s formula may be generalized to thick
targets by integration but we must take the correction factor [ | outside the integral.



Gaussian Approximation (cont.)
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Moli¢re angular distribution for various values of B , plotted so a Gaussian
becomes a straight line. Shows the relative insensitivity to B, the slow approach to
single scattering, and the large deviation from a Gaussian at larger angles. Inset: the
dashed line is Molicre’s Gaussian term. The distribution at small angles 1s well
approximated by a Gaussian, but one with a somewhat smaller characteristic width,



Gaussian Approximation (cont.)
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Projected angle distributions for 158.6 MeV protons on 1 cm of H,O (o = 6.7
mrad). On a linear plot the Moliere/Fano distribution is indistinguishable from
Gaussians using the Moliere/Fano/Hanson or Highland 6, However, it peels
away at 2.50 , and at 50 is more than 100X higher.

We need the correct distribution only if we are looking for rare anomalous
events, not if we are estimating the resolution of a spectrometer.



Moli¢re/Fano/Hanson (0, ...)
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Same paper as before, but measurements are fit with a Gaussian. We
regard Moliere/Fano/Hanson as the gold standard in the Gaussian
approximation, and will try to construct a scattering power which,
when integrated over target thickness, will reproduce it.



Generalized Highland (8g;41,1004)
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Same data, Gaussian fit. Agreement of this simple formula is almost as
good as Oy, (full calculation). (Be is slightly high because Highland
fitted Moliere/Bethe/Hanson instead of Moli¢re/Fano/Hanson.)



Comparison of Approximate Formulas

: 15 L
Rossi 1941: O = — 4/ —
pv V Lp
1 —
Hanson 19571: O = — (xe VB —1.2)
V2

| g _ 141 MeV £1+11_(£>
Highland 1975: 0 = DU NIz 9 ‘U810 Lp

For 160 MeV protons incident on 1 g/ cm? of each material:

material L/R L/Lr Hanson Highland Rossi

% % mrad = Hanson = Hanson
beryllium  4.62 1.53 4.68 1.016 1.354
Lexan 5.40 2.41 6.04 1.016 1.318
water 5.67 2.77 6.56 1.012 1.302
brass 3.73 8.13 12.11 0.994 1.203
lead 2.73  15.70 17.37 0.995 1.162



Highland’s Formula for Thick Targets

Unlike the full Moli¢re theory, Highland’s formula as originally given applies only
to thin targets, as shown by the telltale factor pv. We extended it to moderately
thick and very thick targets. In the first case it is frequently good enough to
replace pv by its geometric mean : pv — p,v;p,v, where 1,2 refer to the incoming
and outgoing proton. For very thick targets, however, it 1s necessary to integrate
over the target thickness, assuming, of course, that the proton range-energy
relation 1s known.

1 L Lo1n2 de]Y?
0y = 1412 |1 + = log;p( — ) (=) — ad
0 [ + 9 0Z1p T ] X [/0 . I rac

Notice that we have taken the logarithmic correction factor out of the integral. It 1s
evaluated for the target as a whole. Without this step (if we think of evaluating the
integral numerically) the answer would get ever smaller as 47’ became smaller.
Other arbitrary measures could be used, such as fixing the integral step size. This
is the one we prefer, and the one used in comparing Highland’s formula with data
in our papet.

Because of the way the integrand depends on depth, it is efficient to divide the
target by equal ratios rather than equal szps when evaluating the integral
numerically.



Accuracy of Highland’s Formula
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This shows the accuracy of Highland’s formula, as generalized to thick targets by
us., as a parameterization of Hanson’s formula applied to the Bethe form of

Moliere theory. It 1s good to £5% as claimed by Highland except for the thinnest
points for lead, which are outside his allowed range.



The HCL Experiment 1967-1987
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A well collimated beam of protons scattered in the target and fell on a measuring
plane where the transverse dose distribution was measured by a diode. The data
were fit to obtain 0y and 0, and the corresponding ‘air’ (target out) angle was
subtracted in quadrature. In converting to angle, the virtual source position was
obtained from theory. Over 20 years, 115 different thicknesses and materials were
measured with steadily more automated methods but the same basic principle.



Typical Data and Fits
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Top: air run and thin through thick Be runs. Bottom: air run an thin through thick Pb
runs. Top right each frame: normalized target thickness. Main frame: measured data in
a semilog plot. Bottom window each frame: fit residual in a linear +5% window.



The Virtual Point Source

Because of the rather short throw in the HCL experiment (to conserve signal), it was
necessary, especially for the thicker targets, to estimate where the protons were coming
from. We called this the ‘effective origin’ of scattered particles. The proper term per
ICRU Report 35 (1984) 1s ‘virtual point source’. The diagram suggests how it may be
calculated. First, we need an expression for the size parameter of the scattered beam
as a function of z Then we extrapolate from two sufficiently distant points. Details
may be found in the paper and will be covered 1n a later lecture.



Overview of HCL Results
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This graph shows the sweep of Molicre theory. With no empirical parameters it
predicts the characteristic multiple scattering angle from Be to Pb over three
decades of normalized target thickness and two decades of multiple scattering
angle.



Behavior Near End-of-Range
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At the Bragg peak, because of range straggling, there is no longer any strong correlation
between depth and proton energy, and the multiple scattering angle appears to saturate.



0arr (measured) / Opr (Moliere) - 1 (%)
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A Closer Look

This graph compares the
HCL results to Moliere
theory on a linear scale in
a T25% window. We use
the ‘Fano correction’ for
scattering by atomic
electrons throughout, but
it only matters for Be. The
region (target > (0.97X
mean range) is separated
and plotted to a different
scale. Excluding those
points, the mean error

overall is —0.5 £0.4% with
an rms width of 5%. The
same comparison for
Highland’s formula (not
shown) gives —2.6 £0.5%
with a width of 6%. The
Lynch and Dahl formula
gives very similar results.



Grand Summary
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We reviewed and in some cases reanalyzed the six previous proton studies. Some of
those claimed Moliere’s theory was wrong, others were not aware of his generalization
to thick targets. The summary, above, is plotted to an arbitrary abscissa with each
experiment averaged over everything but target material. The experiments ranged from
1 MeV to 200 GeV. The mean 1s —0.3 £0.5% (!) with an rms spread of 3%.



A Competing Theory
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The theory of Nigam, Sundaresan and Wu (NSW) is claimed by them to be more
correct on theoretical grounds and to give better agreement with the electron data
of Hanson et al., where they used only #w0 of the four measurements. NSW theory is
of the Molicre form but more complicated, and has an empirical parameter. This
graph shows the comparison with 2/ of Hanson’s data as computed by Scott (Rev.
Mod. Phys. 35 (1963) 231). NSW theory is worse for ezzher value of their parameter.



A Curious Fact
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... first drawn to my attention by Andy (who else?) is that the mwaximum scattering
angle from any material, the angle which obtains at (0.97X mean range), 1s very
nearly independent of incident energy. Looking at Pb, it’s impossible to get more
than 280 mrad =16° from protons, justifying the small angle approximation.



7.4 Fortran Function ThetaO

Thetal incorporates all the formulas and procedures of this Chapter. Betore
calling it you must initialize the range-energy functions:

i = InitRange (’\BGWARE\DATA\ICRU49.RET’)

mode = ’'MOLIERE ’
thetaM = ThetaO(mode,tgm,t2,matl,bb)

Input parameters are MODE which is a code (8 characters) for the scattering
theory; TGM, the target g/cm?; T2, the outgoing kinetic energy (MeV) and MATL
which is a code for the target material (20 characters). Output, in addition to
the funetion value, 1s BB, Moliére's B. There 1s also a COMMON block

COMMON/Extras/nn,alfasq,chiOsq,chiasq,chicsq,b

which allows the calling program to access the Moliere parameters. It need not
be used otherwise. NN is the number of target slabs used for integration; the
others are obvious. Theta0 has extensive comments: see these for details.

In addition to computing the characteristic angle for Moliere theory and
its variants and approximations, THETAO.FOR also contains a subprogram for
computing the multiple scattering angular distribution. This routine, BetheF,
uses Bethe's tables [5]. To see how it is used consult InitFscat in CSI.FOR.
Note that Fscat i initialized by MAIN only once, using typical target parameters
viz. LEAD, 1 g/cm?, 160 MeV. These are only used to compute B, on which
f(8) depends very weakly (Figure 7.5).



task ? STACK THETAQ

material ?7 WATER

scattering theory ? HIGHLAND
thickness (g/cmZ) 7 1.000

outgoing energy (MeV) ? 130.000

thetal (radian) = 0.007784

task ? THETAOD

material 7 WATER

scattering theory ? HIGHLAND HANSCH
thickness (g/cmZ) 7 1.000

outgoing energy [(MeV) ? 130.000

thetal (radian) = 0.007724

task ? THETAOD

material ? WATER

scattering theory ? HANSOHN RC551
thickness (g/cm2) 7 1.000

outgoling energy (HMeV) 7 130,000

thetal (radian) = 0.010013



Combining

In beam line design we ﬁ@}@éﬂl@ﬂi@&ﬁto compute the net multiple scattering angle
from (say) a sheet of plastic followed by a sheet of lead, or some even more
complicated set of homogeneous slabs’.

Moliere theory does not apply to a sheet of plastic followed by a sheet of lead. (It
would apply to a fine mixture of plastic and leadl) However, we can find each
characteristic angle by itself (taking energy loss into account) and add them in
quadrature:

2 2 12 )2
0y = O + oo + -0+ Ohy

That this procedure is, strictly speaking, zncorrect 1s easily seen. Divide a scatterer
made of a single material into halves. Their quadratic sum will always be too small
by ~3%, as can also be seen directly from Highland’s formula. The error is worse,
the more you divide the scatterer.

Nevertheless, addition in quadrature works well enough in practice, perhaps
because in common engineering situations one of the slabs will dominate.

A better method suggested by Lynch and Dahl (Nucl. Instr. Meth. B58 (1991) 6-
10) is not practical for beam line design, essentially because it does not allow us to
compute slabs separately. The entire issue of mixed slabs 1s rather complicated, and
will be covered later.



Summary

The Moliere theory of multiple scattering applies to compounds and mixtures,
and target thicknesses up to ~97% of the mean range. It has no adjustable
parameters. It is at least accurate as available experiments (a few percent).

Highland’s approximation to the characteristic angle of the best Gaussian fit is
nearly as good as Hanson’s formula based on the full theory, and far easier to
evaluate. For thick targets, it must be integrated. For targets of intermediate
thickness one can replace pv by (p,2,p,2,) ">

In beam line design, finite slabs can be combined to sufficient accuracy by adding
their characteristic angles in quadrature.

High-Z materials (lead) scatter far more than low-Z materials (water, plastic). We
will make use of this to design contoured scatterers compensated for energy loss
or range modulators compensated for scattering angle.



