
Stopping

When protons pass through matter they slow down and stop by millions of

collisions with atomic electrons. The ‘Bethe-Bloch’ theory for this process was

worked out by 1933 [1,2].

Below 1 MeV the theory is very complicated with 20-30% differences between

various forms [2]. At very high energies, other corrections come in [2].

However, in the clinical range 3-300 MeV (range 0.01 → 50 cm H2O) these

corrections are negligible and the theory takes its simplest form.

The theory contains one parameter whose value cannot be computed from first

principles with sufficient accuracy, the mean excitation energy I, a property of the

material’s atomic or molecular structure. I increases with atomic number Z,

ranging from approximately 20 to 1000 eV over the periodic table [2].

I is chosen to fit experimental results when available, and by interpolation

otherwise. This is best left to the experts, so we use standard tables e.g. ICRU49

[2], Janni82 [3]. When tables differ for a given material, it is because of their

choice of I. Such differences are typically 1-2%. A given set of tables may well

be correct for one material and less so for another.
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In its simplest form the theory fits on one page. Bethe’s formula for the electronic mass 

stopping power is 

Z, A are the atomic number and relative atomic mass of  the target atom, z is the 

charge number of  the projectile and β = v/c. The first term is a constant:

L(β) is called the stopping number. If  all four corrections to the Bethe formula are 

ignored (OK at therapy energies) one finds

where Wm is the largest possible energy loss in a single collision with a free electron 

and I is the mean excitation energy of  the medium. Wm is given by

but at therapy energies the factor in square brackets can be set to 1. Finally, it is 

convenient to know that



Mean Excitation Energy I

This graph from ICRU 49 [2] shows the dependence of I on atomic number Z.

Irregularities in I/Z vs. Z are caused by atomic shell structure. It’s obvious that

interpolating I accurately between measured values (from range or stopping

power measurements) is not easy.



Mixtures obey the Bragg additivity rule, which is easily derived by assuming 

the absorber to be composed of  several discrete sheets:

Compounds and molecules are more complicated because I  is affected by 

chemical bonding. Water turns out to be a particularly difficult case, which 

is unfortunate.

R (160, water) = 17.648 g/cm2      (ICRU49)

= 17.806 (+0.9%)    (Janni82)

It seems that the Janni82 value is better (Moyers et al., Med. Phys. 34 

(2007) 1952-1966)

Mixtures, Compounds and Molecules



Range

Proton range is the integral of  inverse stopping power. The proton enters 

at T and stops when the kinetic energy is 0 .

Sometimes it is convenient to write the integral in a universal form:

Strictly speaking, the integrals we have written down are the proton

pathlength. However, protons scatter very little so for practical purposes the

pathlength equals the projected range. Experimentally, the computed range

is interpreted as the depth by which half the protons have stopped, is

written r0, and is called the mean projected range or just range.



The Power Law

The graph shows the integrand (second formula, previous page) in its universal

form where it depends only on T/mc2. If that were a straight line, the integral

would be (T/mc2 )2. Since it increases slower than linearly, the power is less than

2. For water in the clinical energy range, R ≈ a T 1.78 . For other materials the

exponent is slightly different. The power law approximation is common in the

literature, but we normally use a more accurate relation, described later.



Range Straggling

Range straggling refers to the spread in proton ranges (even in a monoenergetic beam)

because energy loss is a statistical process that occurs in discrete steps. The full theory

is complicated: see Janni [3], who also gives tables. The spread can be characterized by

a Gaussian with an rms value σS , which is nearly proportional to r0 (see graph). This

nearly material-independent behavior has important consequences: it means we can

assume the Bragg peak in H2O has a constant shape even if some stopping occurred

in Pb.



Range-Energy for Other Particles

Because the range-energy relation depends only on particle speed it is possible to

write down scaling rules to find it for other particles if it is known for protons.

The example shows the case for α particles. The range of a 200 MeV α equals the

range of a 50 MeV proton (1/4 the energy).



Having talked about how to predict range, let’s see how we measure it. The simplest

arrangement (left) consists of a beam monitor and a stack of known degraders placed

in front of a Faraday cup. This measures (in accordance with the definition of range)

the number of surviving protons (not the dose!) as a function of projected depth in CH2 or

whatever (aluminum is also good). Data (right) show a gradual falloff as protons

succumb to nuclear reactions: charged secondaries will mostly miss the FC because of

the distance. r0 is the x value of the halfway point measured from the corner (y ≈ 0.37)

not the entrance (y ≈ 0.53). The open circles were taken with a different FC with the

CH2 much closer to the charge collector.

Measuring Range



Measuring Range (continued)

It may not be convenient to use a Faraday cup.

Frequently all we have is a small dosimeter

(rather than a fluence meter) and a water tank.

In that case we’ll measure a depth-dose

distribution, that is, a Bragg peak (BP) (bottom

frame).

That clearly tells us something about the range,

but what exact point on the BP equals r0? The

answer was first found by Andy Koehler using

a graphical method of calculation: r0 = d80, the

distal 80% point of the BP. This has since been

confirmed by several others. The result is

purely numerical (not an analytic ‘proof ’) so

the 80 is not exactly 80, but close enough.

A number of BP’s taken at the same mean

energy but with different energy spreads will

intersect at d80, making it a good physics

benchmark. Clinically, we are more likely to be

interested in d90.



d80 versus d90

In designing clinical setups we must keep track of what the clinicians actually want

and how it relates to the range d80. Our programs are forever computing depths and

then correcting for the difference between d80 and (say) d90. That depends on energy

and energy spread, and must be measured. The data shown are from the Burr Center.



Interpolating Range-Energy Tables

As we already know from the power-law approximation, the range-energy relation is

nearly a straight line in a log-log presentation (top). Therefore we use cubic spline

interpolation in log(R) vs. log(T) to find intermediate values. That is equivalent to

using a variable-power law. It is accurate to ≈ 0.1% over the clinical range 3-300

MeV (bottom), even if we only enter 13 table values. This is how LOOKUP does it.



Fragment of  JANNI82.RET :

-----------------------------------------------------------------------

WATER

1.000 36.08

1. .1119  1.0079

8. .8881 15.9990

.00012221 .00024086 .00080409 .0023995 .0076041 .03676 .12479 

.43147 2.2515 7.7929 26.185 117.96 328.19

-----------------------------------------------------------------------

Typical Fortran fragment :

Program and Data File Examples



Find the energy out of  5 g/cm2 Lexan for 160 Mev incident protons.

Typical Problem

We write this problem in shorthand

T1

160 MeV

M1 = ‘Lexan’

G1 = 5 g/cm2

R1

R2



Exact method using range:

Approximate method using stopping power:

Solution

Summary:



Fortran Implementation

Exact method :

In Fortran all that can be written :

We never use the approximate method in programs. The 

slight gain in speed is not worth the extra bookeeping.



Another Problem (from the Book)



Water Equivalence

However, if we do that calculation for the same lead degrader at two different

energies we’ll get different answers because the stopping power ratio depends on

energy: the curves for Pb and water are not quite parallel. The 0.62 cm Pb in the

second scatterer of the Burr Center nozzle is equivalent to 3.556 cm H2O at 200

MeV and 3.355 at 70 Mev. The 2 mm difference is just enough to be troublesome.

The plastic/water ratio is independent of energy so water equivalence of plastic is a

safer concept. If you really need an accurate water equivalent it’s better to measure it.

In proton therapy two degraders are

equivalent if the energy loss is the same.

The thickness of water tW that gives

the same energy loss as a thickness tM

of some other material, at incident

energy Ei , can be found exactly

(LOOKUP/WATEREQ):



Energy Spread of  Degraded Beams

ΔT ΔT′

T T′

Suppose you are managing a non-clinical user program where you supply

various energies by degrading the beam. The customer wants to know the

energy spread of the degraded beam. Andy Koehler found that

as a consequence of the nonlinearity of the range-energy relation. The

proof is easy. The formula is only approximate. If T′ is very small its

distribution becomes skewed (asymmetric).



A Related Issue

known energy 

distribution

A

A

B

unknown 

energy 

distribution

d

Suppose we have a dosimeter (plane parallel ion chamber) at some depth in a water tank.

It responds to the mix of energies at that depth. It signal will change very little if we

remove surrounding volumes of water A and distal volume B: side- and back-scattering

effects are negligible in most cases for protons. That has far reaching consequences. It

means the energy distribution inside a water tank is the same as that behind the equivalent

water column. We can measure a Bragg peak either with a water tank or a water column;

more important, we can measure the Bragg peak in solids behind a stack of degraders.

All this would be much less true for electrons, where backscattering can be significant.



Proof  of   ΔT′/ΔT = (S/ρ)′/(S/ρ)

T1

T1

T2T2
′

T2
′T2

T1
′

T1
′

R(T1
′)

R(T2
′)

R(T1)

R(T2)

ΔR

For any ΔT (MeV) and a corresponding

ΔR (g/cm2), by definition

For the incident energies this reads

and for the outgoing energies it reads

But the LH sides are just two different

expression for ΔR (see sketch at left).

So the RH sides are equal and Andy’s

formula follows.



Another Way of  Looking at It

As protons penetrate a degrader their energy spread increases. To show why,

we have drawn the hypothetical range-energy curves for monoenergetic 152

and 160 MeV protons in water ignoring range straggling. The dispersion in width

with depth is due solely to the nonlinear range-energy relation!



Energy Degraders Used With Cyclotrons

Cyclotron-based therapy facilities use degraders to change the beam energy

because variable-energy cyclotrons are very expensive and energy changes

are very slow. The resulting increase in energy and angular spread is pared

away by slits but a lot of beam is lost in the process.



NaI 

SCINTILLATOR

DEGRADER TO

PULSE-HEIGHT

ANALYZER

From Cascio et al. ‘Measurements of the energy spectrum of degraded beams at

NPTC,’ Proc. IEEE Radiation Effects Data Workshop (2004) 151. The energy

spectrum was measured with a NaI scintillation spectrometer at a given setting of

the NPTC momentum slits. The long tail to the left of the peak is an artifact from

nuclear reactions in the NaI crystal; a magnetic spectrometer would be better.

Measuring  ΔT′/ΔT = (S/ρ)′/(S/ρ)



Measuring  ΔT′/ΔT = (S/ρ)′/(S/ρ) (final)

From Cascio et al. The full prediction of observed ΔT′ is more complicated than

the simple formula. One must include detector resolution and the fact that some

energy width would develop from straggling even if the incident energy spread were

zero.



This eye beam degrader (originally clear Lexan) was in a 

strongly focused beam for years. Eventually the energy 

width of  the output beam increased. Watch out for this!

Funny Things Can Happen



Summary

The range-energy relation for a material depends on an empirical parameter I. Since I is
hard to choose, we leave it to the experts and use tables, which may differ by 1-2%.

The proton range r0 is defined as the depth where 50% of the protons have stopped,
not counting those that suffer nuclear reactions. Ideally it should be measured with a
fluence meter. If a dosimeter must be used (Bragg peak) use r0 = d80 .

Range straggling is a nearly constant percentage of range and nearly the same for all
materials. That makes the shape of the Bragg peak nearly independent of the stopping
material, an extremely important result for the designer.

The range-energy relation in a given material is approximately described by the power
law r0 ≈ A TB . A and B depend on the material. B is always a little less than 2. In
practice, though, we find ranges by cubic spline interpolation of log(R) vs. log(T).

We solve degrader problems by manipulating range-energy relations directly. The more
obvious dE/dx method is seriously wrong for thick degraders.

Usually, we will solve design problems by working with range, pullback etc. In other
words, we rarely need to know the energy or energy spread in the beam. If we do, we
can use ΔT′ ≈ ΔT × (S/ρ)′/(S/ρ) to estimate it.

Severe radiation damage can affect a degrader, causing a larger output energy spread.

N.B. we can use range-energy tables for most design work but because of the
~3mm/30cm uncertainty we must never use them to determine treatment depth in a
patient. Instead, we must use measured depth in water or measured water equivalents.


