Mathematical Optimization in Radiotherapy Treatment Planning

Ehsan Salari

Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School

HST S14 May 6, 2013

Introduction	Fluence Map Optimization	Leaf Sequencing	Direct Aperture Optimization
Outline			

Intensity-modulated Radiotherapy (IMRT)

Sequential Method: Fluence-map Optimization (FMO)

Sequential Method: Leaf Sequencing (LS)

Direct Aperture Optimization (DAO)

Intensity-modulated Radiotherapy (IMRT)

- In 3D-CRT, radiation fluence across the opening area of the aperture is constant
- To better spare organs-at-risk more fluence modulation is needed
- Intensity-modulated radiotherapy (IMRT) is a more recent modality that allows for more fluence modulation at each beam

Figure: [Webb, 2001]

Comparing 3D-CRT and IMRT

- 3D-CRT shapes apertures that conform to tumor shape
- IMRT creates a *fluence map* (intensity profile) per beam

Direct Aperture Optimization

Multi-leaf Collimator (MLC)

In IMRT

- gantry head is equipped with a multi-leaf collimator (MLC) system
- MLC leaves form apertures with different shapes and intensities

Creating Fluence Maps using MLC

 Using MLC a desired fluence map can be created

Direct Aperture Optimization

IMRT Treatment Planning

- IMRT planning is to determine a set of apertures and their intensities that yield a dose distribution that
 - adequately covers target(s)
 - preserves functionality of *critical* structures

- (1) Beam orientation optimization (BOO)
 - determines a set of beam directions
 is usually performed manually
- (2) Fluence-map optimization (FMO
 - determines an intensity profile for each beam
- (3) Leaf sequencing (LS)
 - decomposes intensity profiles to deliverable apertures
- Direct aperture optimization (DAO)
 - integrates FMO and LS

- (1) Beam orientation optimization (BOO)
 - determines a set of beam directions
 - is usually performed manually
- (2) Fluence-map optimization (FMC
 - determines an intensity profile for each beam
- (3) Leaf sequencing (LS)
 - decomposes intensity profiles to deliverable apertures
- Direct aperture optimization (DAO)
 - integrates FMO and LS

- (1) Beam orientation optimization (BOO)
 - determines a set of beam directions
 - is usually performed manually
- (2) Fluence-map optimization (FMO)
 - determines an intensity profile for each beam
- (3) Leaf sequencing (LS)
 - decomposes intensity profiles to deliverable apertures
- Direct aperture optimization (DAO)
 - integrates FMO and LS

- (1) Beam orientation optimization (BOO)
 - determines a set of beam directions
 - is usually performed manually
- (2) Fluence-map optimization (FMO)
 - determines an intensity profile for each beam
- (3) Leaf sequencing (LS)
 - decomposes intensity profiles to deliverable apertures
- Direct aperture optimization (DAO)
 integrates FMO and LS

- (1) Beam orientation optimization (BOO)
 - determines a set of beam directions
 - is usually performed manually
- (2) Fluence-map optimization (FMO)
 - determines an intensity profile for each beam
- (3) Leaf sequencing (LS)
 - decomposes intensity profiles to deliverable apertures
- Direct aperture optimization (DAO)
 - integrates FMO and LS

Fluence-map Optimization (FMO)

- Rectangular beams are discretized into beamlets i ∈ I
- Using pencil-beam dose calculation method, *beamlet dose deposition coefficients D* = [D_{iv}] (i ∈ I, v ∈ V) are computed
- Using optimization methods, optimal fluence maps x_i (i ∈ l) are determined
 - large-scale problem: $\mathcal{O}\left(10^3\right)$ beamlets and $\mathcal{O}\left(10^5\right)$ voxels

FMO Mathematical Formulation

Mathematical formulation for the FMO problem

 $\min G(\mathbf{d})$

subject to

 $\begin{aligned} \mathbf{d} &= D^\top \mathbf{x} \\ H\left(\mathbf{d}\right) \leq \mathbf{0} \\ \mathbf{x} \geq \mathbf{0} \end{aligned}$

Notation

- x: vector of beamlet intensities
- $D = [D_{iv}]$: matrix of beamlet dose deposition coefficients

NLP Solution Approach for FMO

- FMO problem can be solved using *interior-point method* (*barrier method*)
 - see [Bazaraa et al., 2006]
 - transform the constrained problem to unconstrained problem using barrier function
 - sets a barrier against leaving the feasible region

$$\min_{\mathbf{x}} \ G\left(D^{\top}\mathbf{x}\right) + \mu \underbrace{B(\mathbf{x})}_{\text{barrier}} \qquad \mu > 0$$

- Barrier function characteristics are
 - nonnegative and continuous over $\{\mathbf{x} : \mathbf{x} \ge \mathbf{0}, H(D^{\top}\mathbf{x}) \le \mathbf{0}\}$
 - approaches ∞ as ${f x}$ approaches the boundary from interior

Barrier Method for FMO

We formulate a parametric problem

$$\phi\left(\mu\right) = \min_{\mathbf{x}} G\left(D^{\top}\mathbf{x}\right) + \mu B\left(\mathbf{x}\right)$$

It can be shown that

$$\lim_{\mu \to \mathbf{0}^{+}} \phi\left(\mu\right) = \min_{\mathbf{x}} \left\{ G\left(D^{\top} \mathbf{x}\right) : \mathbf{x} \geq \mathbf{0}, H\left(D^{\top} \mathbf{x}\right) \leq \mathbf{0} \right\}$$

<ロ><型><注</p>

Barrier Method for FMO

- 1 Initialize: choose interior point $\mathbf{x}_0 > \mathbf{0}$, $\mu_0 > \mathbf{0}$, and $\mathbf{0} < \beta < \mathbf{1}$
- 2 Main step: at iteration k solve unconstrained problem

$$\min_{\mathbf{x}} \ G\left(\boldsymbol{D}^{\top}\mathbf{x}\right) + \mu_{k}B\left(\mathbf{x}\right)$$

to obtain optimal solution \mathbf{x}_k

3 Termination condition: if $\mu_k B(\mathbf{x}_k) < \epsilon$, stop; otherwise, $\mu_{k+1} = \beta \mu_k$ and go to step 2

Unconstrained Optimization

Consider unconstrained optimization problem

min $F(\mathbf{x})$

- $\bar{\mathbf{x}}$ is a *global minimum* if $F(\bar{\mathbf{x}}) \leq F(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$
- $\bar{\mathbf{x}}$ is a *local minimum* if there is an ϵ -neighborhood $N_{\epsilon}(\bar{\mathbf{x}})$ around $\bar{\mathbf{x}}$ such that $F(\bar{\mathbf{x}}) \leq F(\mathbf{x})$ for all $\mathbf{x} \in N_{\epsilon}(\bar{\mathbf{x}})$
 - we assume differentiability
 - see [Bazaraa et al., 2006]

Characterizing Local Minimum

s is a *descent* direction at x if

$$\lim_{\lambda \to 0^{+}} \frac{F\left(\bar{\mathbf{x}} + \lambda \mathbf{s}\right) - F\left(\bar{\mathbf{x}}\right)}{\lambda} = \nabla F\left(\bar{\mathbf{x}}\right)^{\top} \mathbf{s} < \mathbf{0}$$

- Necessary condition: if $\bar{\mathbf{x}}$ is a local minimum, then $\nabla F(\bar{\mathbf{x}}) = \mathbf{0}$
- Sufficient condition: if ∇F (x̄) = 0 and ∇²F (x̄) ≻ 0, then x̄ is a local minimum

Class of Convex Functions

- Convex functions
 - Definition $\forall \, \bar{\mathbf{x}}, \hat{\mathbf{x}} \in \mathbb{R}^n$

$$F\left(\lambda \bar{\mathbf{x}} + (1-\lambda)\hat{\mathbf{x}}\right) \leq \lambda F\left(\bar{\mathbf{x}}\right) + (1-\lambda)F\left(\hat{\mathbf{x}}\right) \qquad \lambda \in (0,1)$$

- *F* is convex if and only if ∇²*F* is positive semi-definite everywhere
- If *F* is convex, then $\bar{\mathbf{x}}$ is a global minimum if and only if $\nabla F(\bar{\mathbf{x}}) = \mathbf{0}$
 - a desired property for unconstrained optimization

Steepest Descent for Unconstrained Optimization

- Starting from $\bar{\mathbf{x}}$ it iteratively moves toward local minimum
- Steepest descent at $\bar{\mathbf{x}}$ can be obtained by

 $\min \nabla F(\bar{\mathbf{x}})^{\top} \, \mathbf{s}$

subject to

$$\|\mathbf{s}\| \leq 1$$

which yields

$$\mathbf{s} = -rac{
abla F(ar{\mathbf{x}})}{\|
abla F(ar{\mathbf{x}})\|}$$

Steepest Descent for Unconstrained Optimization

- 1 Initialize: Let $\epsilon > 0$, choose starting point \mathbf{x}_0
- 2 Steepest descent direction: At iteration k, let

$$\mathbf{s}_{k} = -rac{
abla F(\mathbf{x}_{k})}{\|
abla F(\mathbf{x}_{k})\|}$$

- **3** Termination condition: If $\|\mathbf{s}_k\| < \epsilon$ stop; else, go to step 4
- 4 Line search:

$$\lambda^* = \operatorname*{argmin}_{\lambda \geq 0} F\left(\mathbf{x}_k + \lambda \mathbf{s}_k
ight)$$

5 Update solution: $\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda^* \mathbf{s}_k$ and go to step 2

Line Search

- *Line search* is to find optimal step length to move from point **x** along direction **s**
- It is rarely possible to obtain analytical solutions

$$rac{\partial \, m{F} \left({f x} + \lambda {f s}
ight)}{\partial \, \lambda} = {f s}^{ op}
abla m{F} \left({f x} + \lambda {f s}
ight) = {f 0}$$

- Numerical methods are commonly used
 - see [Bazaraa et al., 2006]

Line Search: Uncertainty Interval

Derivative-free numerical solution method for

$$\min_{\mathbf{a} \le \lambda \le b} \theta\left(\lambda\right) = F\left(\mathbf{x} + \lambda \mathbf{s}\right)$$

- To reduce uncertainty interval [a, b] we evaluate θ (λ) for different λ ∈ [a, b]
- Suppose θ is *strictly quasi-convex* (unimodal). Let $\lambda_1, \lambda_2 \in [a, b]$
 - If $\theta(\lambda_1) \leq \theta(\lambda_2)$, then $\theta(\lambda) \geq \theta(\lambda_1)$ for $\lambda \in [\lambda_2, b]$
 - If $\theta(\lambda_1) \ge \theta(\lambda_2)$, then $\theta(\lambda) \ge \theta(\lambda_2)$ for $\lambda \in [a, \lambda_1]$

Line Search: Dichotomous Search

1. Initialize: set initial uncertainty interval $[a_0, b_0]$, distinguishing param. $2\epsilon > 0$, and threshold param. δ

2. Main step: let
$$\lambda_1 = \frac{a_k + b_k}{2} - \epsilon$$
 and $\lambda_2 = \frac{a_k + b_k}{2} + \epsilon$, then

$$\left[a_{k+1}, b_{k+1}
ight] = egin{cases} \left[a_k, \lambda_2
ight] & ext{if } heta\left(\lambda_1
ight) \leq heta\left(\lambda_2
ight) \ \left[\lambda_1, b_k
ight] & ext{otherwise} \end{cases}$$

3. Termination condition, if $b_{k+1} - a_{k+1} < \delta$ stop; otherwise, go to Step 2

Example of FMO Mathematical Formulation

 Dose evaluation criteria: summation of piecewise quadratic voxel-based penalties for all relevant structures *s* ∈ *S*

$$\min_{\mathbf{x} \ge \mathbf{0}} G\left(D^{\top} \mathbf{x}\right) = \sum_{s \in S} \sum_{v \in V_s} \gamma_s^+ \underbrace{\max\left\{\sum_{i \in I} D_{iv} x_i - t_v, \mathbf{0}\right\}^2}_{\text{overdosing penalty}} + \gamma_s^- \underbrace{\max\left\{t_v - \sum_{i \in I} D_{iv} x_i, \mathbf{0}\right\}^2}_{\text{underdosing penalty}}$$

 We assume only nonnegativity constraints x ≥ 0, results can be generalized to include dose constraints

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Example of FMO Mathematical Formulation

• Logarithmic barrier function for nonnegativity of beamlet intensities

$$\phi(\mu) = \min_{\mathbf{x}} G\left(D^{\top}\mathbf{x}\right) - \mu \sum_{i \in I} \ln(x_i)$$

We solve φ (μ) for μ > 0 using Steepest Descent method
Alternatively we can use *primal-dual interior-point method*see [Aleman et al., 2010]

Primal-dual Interior Point Method

• To obtain $\phi(\mu)$ we find \mathbf{x}^* where gradient vanishes

$$\frac{\partial G\left(D^{\top}\mathbf{x}\right) - \mu \sum_{i \in I} \ln\left(x_{i}\right)}{\partial x_{i}} = \frac{\partial G\left(D^{\top}\mathbf{x}\right)}{\partial x_{i}} - \frac{\mu}{x_{i}} = 0 \quad i \in I$$

• Variable transformation (x, λ : primal and dual variables)

$$\lambda_i = \frac{\mu}{\mathbf{x}_i} \qquad i \in I$$

Solve nonlinear system of equations for x, λ

$$abla_{\mathbf{x}}G - \boldsymbol{\lambda} = \mathbf{0}$$

 $\boldsymbol{\wedge} \cdot \boldsymbol{X} = \mu \, \mathbf{e}$

<ロ> < (回) < (0) < (0) </p>
24/70

Primal-dual Interior Point Method

- Newton method to solve nonlinear system of equation
 - 1. Main step: determine direction and step length

$$\begin{pmatrix} \Delta \mathbf{x}_{(k)} \\ \Delta \lambda_{(k)} \end{pmatrix} = - \begin{pmatrix} \nabla_{\mathbf{xx}}^2 \mathbf{G}_{(k)} & -\mathbf{I} \\ \Lambda_{(k)} & \mathbf{X}_{(k)} \end{pmatrix}^{-1} \begin{pmatrix} \nabla_{\mathbf{x}} \mathbf{G}_{(k)} - \mathbf{\lambda} \\ \Lambda_{(k)} \cdot \mathbf{X}_{(k)} - \mu_{(k)} \mathbf{e} \end{pmatrix}$$

2. Update solution

$$\begin{pmatrix} \mathbf{x}_{(k+1)} \\ \boldsymbol{\lambda}_{(k+1)} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{(k)} \\ \boldsymbol{\lambda}_{(k)} \end{pmatrix} + \alpha_{(k)} \begin{pmatrix} \Delta \mathbf{x}_{(k)} \\ \Delta \boldsymbol{\lambda}(k) \end{pmatrix}$$

Termination condition: if x[⊤]_(k+1) λ_(k+1) < ϵ, then stop; otherwise go to Step 1

Leaf Sequencing Problem

- How to decompose fluence map into collection of deliverable apertures?
 - we assume step-and-shoot delivery
 - apertures are binary matrices with consecutive ones at each row

Leaf Sequencing (LS)

- There is a large number of possible decompositions
- Leaf Sequencing (LS) aims at finding decomposition with
 - minimal total monitor units (beam-on time)
 - minimal number of binary matrices
 - total treatment time depends on beam-on time and number of apertures
- Assumptions
 - there is only row-convexity constraint on aperture shapes
 - see [Baatar et al., 2005] for additional MLC hardware constraints
 - integral intensities by rounding fluence map X

LS Formulation: Minimizing Beam-on Time

Beam-on time minimization

$$\min \sum_{k \in K} \alpha_k$$

subject to

$$X = \sum_{k \in K} \alpha_k S_k$$
$$\alpha_k \ge 0 \qquad \qquad k \in K$$

Notation

- *K*: set of *M* × *N* binary matrices with consecutive-ones property at each row
- S_k : binary matrix $k \in K$
- α_k : number of MU for binary matrix $k \in K$

28/70

29/70

Minimizing Beam-on Time: Example

• Example

$$\sum_{k \in K} \alpha_k = 5$$

$$\underbrace{\left(\begin{array}{ccc} 2 & 5 & 3 \\ 3 & 4 & 2 \end{array}\right)}_{X} = \underbrace{2\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)}_{\alpha_1 S_1} + \underbrace{1\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right)}_{\alpha_2 S_2} + \underbrace{2\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right)}_{\alpha_3 S_3}$$

- S_1, S_2, S_3 have positive monitor units
- $\alpha_k = 0$ for all other binary matrices $k \in K$

Minimizing Beam-on Time: Solution Approach

Fluence map

$$X = \left(\begin{array}{rrrr} 2 & 5 & 3 \\ 3 & 4 & 2 \end{array}\right)$$

Difference matrix

$$\tilde{X} = \begin{bmatrix} X_{m,n} - X_{m,n-1} \end{bmatrix}_{M \times (N+1)} = \begin{pmatrix} 2 & 3 & -2 & -3 \\ 3 & 1 & -2 & -2 \end{pmatrix}$$

Whenever X
_{m,n} > 0, decomposition needs to use interval with left boundary in bixel m with at least X
_{m,n} MU.

Minimizing Beam-on Time: Solution Approach

• Sum of positive gradient (SPG)

$$SPG_{m} = \sum_{n=1}^{N+1} \max\left\{\tilde{X}_{m,n}, 0\right\} = \sum_{n=0}^{N} \max\left\{0, X_{m,n+1} - X_{m,n}\right\}$$
$$SPG(X) = \max_{m}\left\{SPG_{m}\right\} = \max\left\{4, 5\right\}$$

- *SPG*(*X*) provides a lower bound on the required beam-on time for delivering *X*
 - there are decompositions for which LB can be obtained

Minimizing Beam-on Time: Solution Approach

One can decompose each fluence row individually

$$X = \begin{pmatrix} 2 & 5 & 3 \\ 3 & 4 & 2 \end{pmatrix}$$
$$X_{1.} = \begin{pmatrix} 2 & 5 & 3 \end{pmatrix} \rightarrow \sum_{k \in K} \alpha_{1k} V_k$$
$$X_{2.} = \begin{pmatrix} 3 & 4 & 2 \end{pmatrix} \rightarrow \sum_{k \in K} \alpha_{2k} V_k$$

 Row decompositions can be combined to form LS with minimal beam-on time

$$\alpha_{k''} S_{k''} = \min \left\{ \alpha_{1k}, \alpha_{2k'} \right\} \begin{pmatrix} V_k \\ V_{k'} \end{pmatrix}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト
Minimizing Beam-on Time: Network-flow Model

- Decomposing fluence row m: $(X_{mn} : n \in N)^{\top}$
 - see [Ahuja and Hamacher, 2005]
- Let *K* be the collection of all binary vectors with consecutive-ones property

$$\min\sum_{\pmb{k}\in \pmb{K}}\alpha_{\pmb{k}}$$

subject to

$$\begin{pmatrix} 1 & 0 & 0 & 1 & \dots & 1 \\ 0 & 1 & 0 & 1 & \dots & 1 \\ 0 & 0 & 1 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{pmatrix} = \begin{pmatrix} X_{m1} \\ X_{m2} \\ \vdots \\ X_{mN} \end{pmatrix}$$
$$\alpha_k \ge 0 \quad \forall k \in K$$

33/70

(日)

Minimizing Beam-on Time: Network-flow Model

- It can be represented using a network-flow model
 - by adding a zero vector at the end of constraint matrix and subtracting row n from n+1

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 1 \\ -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ 0 & 0 & -1 & \dots & -1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{pmatrix} = \begin{pmatrix} X_{m1} \\ X_{m2} - X_{m1} \\ \vdots \\ X_{mN} - X_{mN-1} \\ -X_{mN} \end{pmatrix}$$

Minimizing Beam-on Time: Network-flow Model

- Network representation
 - nodes are bixels $n = 1, \ldots, N + 1$
 - arcs are binary vectors with consecutive ones $k \in K$
 - nodes have supply/demand
- What is the minimum-cost flow to satisfy all node demands?

Network-flow Model: Min-cost Flow Algorithm

• Surplus/demand for node n = 1, ..., N is defined as

$$b(n) = X_{mn} - X_{mn-1}$$

- Flow is sent from nodes with surplus b(n) > 0 to nodes with demand b (n') < 0
- 1 Initialize: $u_0 = \min \{n : b_n > 0\}, v_0 = \min \{n : b_n < 0\}$
- 2 Main step: at iteration k

$$\begin{aligned} \alpha_{(u_k,v_k)} &= \min \left\{ b\left(u_k\right), -b\left(v_k\right) \right\} \\ b\left(u_k\right) &\leftarrow b\left(u_k\right) - \alpha_{(u_k,v_k)} \\ b\left(v_k\right) &\leftarrow b\left(v_k\right) + \alpha_{(u_k,v_k)} \end{aligned}$$

3 Termination condition: if u_k , $v_k = N + 1$, stop; else, increment accordingly

Minimizing Number of Apertures

- LS with objective of minimizing number of apertures is more involved
 - belongs to the class of NP-hard problems (see [Baatar et al., 2005])
 - in contrast with minimizing beam-on time which can be solved in polynomial time
 - fluence rows cannot be decomposed individually
- Solution approaches seek for decompositions using minimal number of apertures while constraining beam-on time to SPG

LS Formulation: Minimizing Number of Apertures

• Minimizing number of apertures

 $\min \| \alpha \|_0$

subject to

$$\begin{split} X &= \sum_{k \in K} \alpha_k S_k \\ \sum_{k \in K} \alpha_k \leq SPG(X) \\ \alpha_k \geq 0 \qquad \qquad k \in K \end{split}$$

Notation

- *K*: set of *M* × *N* binary matrices with consecutive-ones property at each row
- S_k : binary matrix $k \in K$
- α_k : number of MU for binary matrix $k \in K$

38/70

Minimizing Number of Apertures: Heuristics

- 1 Initialize: $\hat{X}_0 = X$
- 2 Main step: at iteration k find α_k > 0 and a binary matrix S_k such that

$$\hat{X}_{k} = \hat{X}_{k-1} - lpha_{k} S_{k} \ge 0$$

SPG $(\hat{X}_{k}) = SPG(\hat{X}_{k-1}) - lpha_{k}$

- **3** Termination condition: if $\hat{X}_k = 0$ stop; else, go to Step 2
- To minimize number of apertures we choose maximum possible α_k and corresponding S_k (see [Engel, 2005])

Minimizing Number of Apertures: Heuristics

- 1 Initialize: $\hat{X}_0 = X$
- 2 Main step: at iteration k find α_k > 0 and a binary matrix S_k such that

$$\hat{X}_{k} = \hat{X}_{k-1} - \alpha_{k}S_{k} \ge 0$$

SPG $(\hat{X}_{k}) = SPG(\hat{X}_{k-1}) - \alpha_{k}$

- **3** Termination condition: if $\hat{X}_k = 0$ stop; else, go to Step 2
- To minimize number of apertures we choose maximum possible α_k and corresponding S_k (see [Engel, 2005])

Shortcoming of the Sequential Method

- There is often dose discrepancy between FMO and LS solutions
 - some LS methods require rounding fluence maps
 - limited number of apertures are used
- Knowledge of *shape* and *intensity* of apertures are required to model several aspects of IMRT treatment plan
- DAO frameworks have been developed to address these issues

Shortcoming of the Sequential Method

- There is often dose discrepancy between FMO and LS solutions
 - some LS methods require rounding fluence maps
 - limited number of apertures are used
- Knowledge of shape and intensity of apertures are required to model several aspects of IMRT treatment plan
- DAO frameworks have been developed to address these issues

Direct Aperture Optimization

- Direct aperture optimization (DAO) aims at *directly* finding optimal collection of apertures and their intensities
 FMO and LS are integrated into a single problem
- In contrast with 3D-conformal radiotherapy where apertures conform to tumor shape in beam's eye-view, in DAO any deliverable aperture by MLC may be used
- We discuss DAO solution methods proposed in [Romeijn et al., 2005] and [Hårdemark et al., 2003]

Direct Aperture Optimization

- Direct aperture optimization (DAO) aims at *directly* finding optimal collection of apertures and their intensities
 - FMO and LS are integrated into a single problem
- In contrast with 3D-conformal radiotherapy where apertures conform to tumor shape in beam's eye-view, in DAO any deliverable aperture by MLC may be used
- We discuss DAO solution methods proposed in [Romeijn et al., 2005] and [Hårdemark et al., 2003]

Direct Aperture Optimization

- Direct aperture optimization (DAO) aims at *directly* finding optimal collection of apertures and their intensities
 - FMO and LS are integrated into a single problem
- In contrast with 3D-conformal radiotherapy where apertures conform to tumor shape in beam's eye-view, in DAO any deliverable aperture by MLC may be used
- We discuss DAO solution methods proposed in [Romeijn et al., 2005] and [Hårdemark et al., 2003]

Column Generation Method: Formulation

• Mathematical formulation for the DAO problem

 $\min G(\mathbf{d})$

subject to

$$egin{aligned} d_{v} &= \sum_{k \in \mathcal{K}} \mathcal{D}_{kv} y_{k} & v \in V \ y_{k} &\geq 0 & k \in \mathcal{K} \end{aligned}$$

Notation

y = (y_k : k ∈ K)^T: vector of aperture intensities
D = [D_{kv}]: matrix of aperture dose deposition coefficients
d = (d_v : v ∈ V)^T: vector of dose distribution

DAO Solution Challenges

- Naive application of convex optimization techniques to this problem is computationally prohibitive
- K contains a large number of apertures
 - $\mathcal{O}(10^{45})$ deliverable apertures per beam angle
- We are interested in sparse solutions
 - clinically reasonable number of apertures (\leq 50 per beam)

DAO Solution Method: Search for Local Minimum

- Necessary optimality conditions for unconstrained problems (i.e., ∇F (ȳ) = 0) can be extended to constrained ones
- If y
 is a local minimum, then, under some regularity conditions, it satisfies Karush-Kuhn-Tucker (KKT) conditions
- For a convex problem with affine equality constraints, KKT conditions are necessary and sufficient for global optimality

KKT Optimality Conditions

 If y
 is a local minimum, then there exist vectors of Lagrange multipliers u
 , v
 such that this system of equations are satisfied

$$\nabla F(\bar{\mathbf{y}}) + \sum_{\ell \in L_1} \bar{u}_{\ell} \nabla P_{\ell}(\bar{\mathbf{y}}) + \sum_{\ell \in L_2} \bar{v}_{\ell} \nabla Q_{\ell}(\bar{\mathbf{y}}) = \mathbf{0}$$
s.t.

$$P_{\ell}(\mathbf{y}) \leq 0 \quad \ell \in L_1 \qquad \overline{u}_{\ell} P_{\ell}(\bar{\mathbf{y}}) = 0 \qquad \ell \in L_1$$

$$Q_{\ell}(\mathbf{y}) = 0 \quad \ell \in L_2 \qquad P_{\ell}(\bar{\mathbf{y}}) \leq 0 \qquad \ell \in L_1$$

$$Q_{\ell}(\bar{\mathbf{y}}) = 0 \qquad \ell \in L_2$$

$$\overline{u}_{\ell} \geq 0 \qquad \ell \in L_1$$

$$Q_{\ell}(\bar{\mathbf{y}}) = 0 \qquad \ell \in L_2$$

KKT Conditions for DAO

• KKT conditions for the DAO problem are as follows:

 $\min G(\mathbf{d})$

subject to

$$egin{aligned} d_{v} &= \sum_{k \in \mathcal{K}} \mathcal{D}_{kv} y_{k} \qquad v \in V \ y_{k} \geq 0 \qquad \qquad k \in \mathcal{K} \end{aligned}$$

 π, ρ: vectors of voxels and apertures Lagrange multipliers

$$\frac{\partial G}{\partial d_{v}}\Big|_{\mathbf{d}=\bar{\mathbf{d}}} - \pi_{v} = 0 \quad v \in V$$

$$\sum_{v \in V} \mathcal{D}_{kv}\pi_{v} - \rho_{k} = 0 \quad k \in K$$

$$y_{k}\rho_{k} = 0 \quad k \in K$$

$$y_{k} \ge 0 \quad k \in K$$

$$d_{v} = \sum_{k \in K} \mathcal{D}_{kv}y_{k} \quad v \in V$$

$$\rho_{k} \ge 0 \quad k \in K$$

46/70

DAO Solution Approach

- We aim at finding $(\bar{\mathbf{y}}, \bar{\mathbf{d}}, \bar{\pi}, \bar{\rho})$ that satisfy KKT conditions
- Due to large number of apertures we cannot incorporate all of them
- We start by considering only a subset of apertures K̂ ⊂ K and sequentially add remaining ones until KKT conditions are all met

DAO Solution Approach: Restricted Problem

• Consider *restricted* DAO problem in which $\hat{K} \subset K$ min $G(\mathbf{d})$

subject to

$$d_{v} = \sum_{k \in \hat{K}} \mathcal{D}_{kv} y_{k} \qquad v \in V$$
$$y_{k} \ge 0 \qquad k \in \hat{K}$$

- This can be solved using a constrained optimization method to obtain (y*, d*)
 - barrier method or projected gradient method

Restricted DAO Problem: KKT Conditions

 Solution (y*, d*) satisfies KKT conditions for the restricted DAO problem

$$d_{v}^{*} = \sum_{k \in \hat{K}} \mathcal{D}_{kv} y_{k}^{*} \qquad v \in V$$

$$\pi_{v}^{*} = \frac{\partial G}{\partial d_{v}} \Big|_{\mathbf{d} = \mathbf{d}^{*}} \qquad v \in V$$

$$\rho_{k}^{*} = \sum_{v \in V} \mathcal{D}_{kv} \pi_{v}^{*} \qquad k \in \hat{K}$$

$$y_{k}^{*} \rho_{k}^{*} = 0 \qquad k \in \hat{K}$$

$$y_{k}^{*} \geq 0, \rho_{k}^{*} \geq 0 \qquad k \in \hat{K}$$

• We then construct solution $\bar{\mathbf{y}}$ as $\bar{\mathbf{y}}_k = \begin{cases} y_k^* & \kappa \in \kappa \\ 0 & k \in K \setminus \hat{K} \\ \Box & \sigma \in K \setminus \hat{K} \end{cases}$

DAO Solution Approach: KKT Conditions

• We substitute $\bar{\boldsymbol{y}}$ in KKT conditions of original DAO problem

$ar{m{d}}_{m{v}} = \sum_{m{k}\inm{K}} \mathcal{D}_{m{k}m{v}}ar{m{y}}_{m{k}}$	$oldsymbol{ u}\inoldsymbol{V}$
$\bar{\pi}_{\boldsymbol{V}} = \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{d}_{\boldsymbol{V}}} \bigg _{\boldsymbol{d} = \bar{\boldsymbol{d}}}$	$v \in V$
$\bar{\rho}_k = \sum_{\mathbf{v}\in\mathbf{V}} \mathcal{D}_{k\mathbf{v}} \bar{\pi}_{\mathbf{v}}$	$k \in K$
$\bar{y}_k\bar{ ho}_k=0$	$k \in K$ why?
$ar{y}_k \geq 0$	$\pmb{k}\in\hat{\pmb{K}}$
$ar{y}_k = 0$	$\pmb{k}\in \pmb{K}\setminus \hat{\pmb{K}}$
$ar{ ho}_{m{k}} \geq {f 0}$	$k \in \hat{K}$ why?
$ar{ ho}_{k} \geq 0$	$k \in K \setminus \hat{K} ?$

To ensure if p
_k ≥ 0 for k ∈ K we formulate and solve the pricing problem

$$\min_{k\in K}\bar{\rho}_k=\sum_{\nu\in V}\mathcal{D}_{k\nu}\bar{\pi}_{\nu}$$

 Aperture k ∈ K consists of a collection, A_k, of exposed beamlets i ∈ I

$$\mathcal{D}_{kv} \approx \sum_{i \in A_k} D_{iv}$$

Pricing problem is reformulated using beamlet dose deposition coefficients

$$\min_{k \in K} \sum_{i \in A_k} \sum_{v \in V} D_{iv} \bar{\pi}_v$$

To ensure if p
_k ≥ 0 for k ∈ K we formulate and solve the pricing problem

$$\min_{k\in K}\bar{\rho}_k=\sum_{v\in V}\mathcal{D}_{kv}\bar{\pi}_v$$

Aperture k ∈ K consists of a collection, A_k, of exposed beamlets i ∈ I

$$\mathcal{D}_{kv} \approx \sum_{i \in A_k} D_{iv}$$

Pricing problem is reformulated using beamlet dose deposition coefficients

$$\min_{k\in K} \sum_{i\in A_k} \sum_{v\in V} D_{iv}\bar{\pi}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To ensure if p
_k ≥ 0 for k ∈ K we formulate and solve the pricing problem

$$\min_{k\in K}\bar{\rho}_k=\sum_{v\in V}\mathcal{D}_{kv}\bar{\pi}_v$$

Aperture k ∈ K consists of a collection, A_k, of exposed beamlets i ∈ I

$$\mathcal{D}_{kv} \approx \sum_{i \in A_k} D_{iv}$$

 Pricing problem is reformulated using beamlet dose deposition coefficients

$$\min_{k \in \mathcal{K}} \sum_{i \in \mathcal{A}_k} \sum_{v \in \mathcal{V}} D_{iv} \bar{\pi}_v$$

- It finds aperture k with most negative Lagrange multiplier at y
 - *ρ*_k: rate of change in G as intensity of aperture k increases (reduced gradient)

$$\min_{k \in K} \bar{\rho}_k = \sum_{i \in A_k} \underbrace{\sum_{v \in V} D_{iv} \bar{\pi}_v}_{\text{beamlet i's}}$$

- given reduced gradient of all beamlets, it finds collection of beamlets that
 - forms a deliverable aperture
 - has most negative cumulative reduced gradient

Pricing Problem: Pricing Problem

 Pricing problem can be solved for individual beam angles b ∈ B

$\min_{k\in K_b} \bar{\rho}_k$

- Pricing problem can be separated over beamlet rows
 - finding a *sub sequence* of beamlets with most negative cumulative reduced gradient

Pricing Problem: Minimum Subsequent Sum

- It can be solved by a single pass over bealmests in a row
 i = 1,..., N
- 1 Initialize: $b_i = \sum_{v \in V} D_{iv} \pi_v$ for $i \in I$, minSoFar = 0, minEndingHere = 0
- **2** Main step: For i = 1 : N

$${\it minEndingHere} = {
m min}\left\{0, {\it minEndingHere} + {\it b}_i
ight\}$$
 ${\it minSoFar} = {
m min}\left\{{\it minEndingHere}, {\it minSoFar}
ight\}$

- 3 Output: *minSoFar*
- The pricing problem can be extended to incorporate additional MLC hardware constraints

Column Generation Method

- Column generation method for DAO solves restricted and pricing problems iteratively
 - common approach to solve large-scale optimization problems
- It can be terminated if no promising aperture exists or if current solution is satisfactory

Leaf Refinement Problem

- Given a fixed number of apertures, the *leaf* refinement problem aims at finding their optimal leaf positions as well as their intensities
 - see [Hårdemark et al., 2003, Cassioli and Unkelbach, 2013]
- Major difference from column generation approach is that the number of apertures is fixed

Leaf Refinement Method: Dose Deposition

 Expressing dose deposited in voxel v ∈ V in terms of aperture intensities and leaf positions

$$d_{v}\left(\mathbf{x}^{(1)}, \mathbf{x}^{(r)}, \mathbf{y}\right) \equiv \sum_{k \in K} y_{k} \sum_{m \in M} \left(\phi_{mb(k)}^{v}\left(x_{mk}^{(r)}\right) - \phi_{mb(k)}^{v}\left(x_{mk}^{(l)}\right)\right)$$

- Notation
 - $\mathbf{y} = (y_k : k \in K)^\top$: vector of aperture intensities
 - $\mathbf{x}^{(l)} = \left(x_{mk}^{(l)} : m \in M, k \in K\right)^{\top}$: vector of left leaf positions
 - $\mathbf{x}^{(\mathbf{r})} = \left(x_{mk}^{(r)} : m \in M, k \in K \right)^{\top}$: vector of right leaf positions
 - *φ^v_{mb}*(*x*): dose deposited in voxel *v* ∈ *V* under unit intensity

 f rom row *m* ∈ *M* in beam angle *b* ∈ *B* when interval [0, *x*] is
 exposed

Leaf Refinement Method: Dose Deposition

Given beamlet dose deposition coefficient matrix [*D_{iv}*], φ^ν_{mb} can be approximated using a piecewise-linear function

Leaf Refinement Problem: Formulation

Mathematical formulation

 $\min G(\mathbf{d}(\mathbf{z}))$

subject to

$$\begin{array}{ll} \textbf{A}\textbf{x} \leq \textbf{0} \\ H\left(\textbf{d}\left(\textbf{x},\textbf{y}\right)\right) \leq \textbf{0} & \rightarrow F_{\ell}\left(\textbf{d}\left(\textbf{z}\right)\right) \leq \textbf{0} \qquad \quad \ell \in L \\ \textbf{y} \geq \textbf{0} \end{array}$$

- Notation
 - $\mathbf{d} = (d_v : v \in V)^\top$: vector of dose distribution
 - $\mathbf{y} = (\mathbf{y}_k : k \in \mathbf{K})^\top$: vector of aperture intensities
 - $\mathbf{z} = (\mathbf{x}^{(I)} \ \mathbf{x}^{(r)} \ \mathbf{y})^{\top}$: vector of all variables
 - A: constraint matrix of leaf positions

Leaf Refinement Problem: Solution Approach

- Sequential quadratic programming (SQP) can be used
- SQP aims at finding a solution that satisfies KKT conditions

$$egin{aligned}
abla G(\mathbf{z}) + \sum_{\ell \in L} u_\ell
abla F_\ell\left(\mathbf{z}
ight) = \mathbf{0} & \ell \in L \ u_\ell F_\ell\left(\mathbf{z}
ight) = \mathbf{0} & \ell \in L \ \mathbf{u} \geq \mathbf{0} \end{aligned}$$

- One can use Newton method to solve this system
 - Lagrangian is defined as $\mathcal{L} \equiv G + \sum_{\ell \in L} u_\ell F_\ell$
 - we let

$$\nabla F^{\top} = \begin{pmatrix} \nabla F_1^{\top} \\ \vdots \\ \nabla F_L^{\top} \end{pmatrix}$$

Sequential Quadratic Programming

Newton method at iteration k requires to solve

$$\begin{pmatrix} \nabla^{2} \mathcal{L}_{(k)} & \nabla F_{(k)}^{\top} \\ u_{1} \nabla F_{1(k)}^{\top} & F_{1(k)} & 0 \cdots & 0 \\ u_{2} \nabla F_{2(k)}^{\top} & 0 & F_{2(k)} \cdots & 0 \\ u_{L} \nabla F_{L(k)}^{\top} & 0 & 0 & \cdots & F_{L(k)} \end{pmatrix} \begin{pmatrix} \mathbf{z} - \mathbf{z}_{(k)} \\ \mathbf{u} - \mathbf{u}_{(k)} \end{pmatrix} = \\ - \begin{pmatrix} \nabla G_{(k)} + \sum_{\ell \in L} u_{\ell(k)} \nabla F_{(k)} \\ u_{1(k)} F_{1(k)} \\ \vdots \\ u_{L(k)} F_{L(k)} \end{pmatrix}$$

this reduces to

$$\nabla^{2} \mathcal{L}_{(k)} \left(\mathbf{z} - \mathbf{z}_{(k)} \right) + \nabla F_{(k)}^{\top} \mathbf{u} = -\nabla G_{(k)}$$
$$u_{\ell} \left(\nabla F_{\ell(k)}^{\top} \left(\mathbf{z} - \mathbf{z}_{(k)} \right) + F_{\ell(k)} \right) = 0 \qquad \ell \in L$$

61/70

Sequential Quadratic Programming

 Along with u ≥ 0 these are also KKT conditions for the following *quadratic programming* (QP) problem

$$\min G_{(k)} + \nabla G_{(k)}^{\top} \mathbf{v} + \frac{1}{2} \mathbf{v}^{\top} \nabla^2 \mathcal{L}_{(k)} \mathbf{v}$$

subject to

$$abla m{\mathcal{F}}_{\ell(k)}^{ op} m{v} + m{\mathcal{F}}_{\ell(k)} \leq 0 \qquad \qquad \ell \in L$$

in which we substituted $\mathbf{v} = \mathbf{z} - \mathbf{z}_{(k)}$

<ロ > < 部 > < 注 > < 注 > 注 の Q (~ 62/70
< 日 > < 同 > < 回 > < 回 > < 回 > <

63/70

Sequential Quadratic Programming

- One can alternatively solve this QP problem at iteration *k* of Newton method
 - objective function is quadratic approximation of *G* plus curvature of constraints at z = z_k
 - constraints are linear approximation of F_{ℓ} ($\ell \in L$) at $z = z_k$
- The QP problem requires computing $\nabla^2 \mathcal{L}_{(k)}$
 - computationally expensive
 - may not be positive definite

Sequential Quadratic Programming: BFGS Update

To overcome this issue quasi-newton method is employed

$$abla^2 \mathcal{L}_{(k)} \approx B_{(k)} \succeq 0$$

 Positive definite approximations of Hessian using (Broyden-Fletcher-Goldfarb-Shanno) BFGS update

$$\mathbf{B}_{(k+1)} = \mathbf{B}_{(k)} + \frac{\mathbf{q}_{(k)}\mathbf{q}_{(k)}^{\top}}{\mathbf{q}_{(k)}^{\top}\mathbf{p}_{(k)}} - \frac{\mathbf{B}_{(k)}\mathbf{p}_{(k)}\mathbf{p}_{(k)}^{\top}\mathbf{B}_{(k)}}{\mathbf{p}_{(k)}^{\top}\mathbf{B}_{(k)}\mathbf{p}_{(k)}}$$
$$\mathbf{p}_{k} = \mathbf{z}_{(k+1)} - \mathbf{z}_{(k)} \qquad \mathbf{q}_{k} = \nabla \mathcal{L}_{(k+1)} - \nabla \mathcal{L}_{(k)}$$

Leaf Refinement Method: SQP

- Initialization: select initial variables z₍₀₎, lagrange multipliers u₍₀₎, and Hessian p.d. approximation B₍₀₎
- 2 Main Step: at iteration k solve the QP problem

$$\min_{\mathbf{v}} \ G_{(k)} + \nabla G_{(k)}^{\top} \mathbf{v} + \frac{1}{2} \mathbf{v}^{\top} \mathbf{B}_{(k)} \mathbf{v}$$

subject to

$$F_{\ell(k)} +
abla F_{\ell(k)}^{ op} \mathbf{v} \leq 0$$
 $\ell \in L$

3 Termination condition: if ||**v**^{*}|| < ε, stop; otherwise,
 z_(k+1) = **z**_(k) + **v**^{*}, update **B**_(k+1) using BFGS method and go to Step 2

Summary: DAO

- DAO aims at directly solving for aperture shape and intensities
- DAO plans employ fewer apertures and shorter beam-on times compared to two-stage method to obtain similar dose conformity
 - see [Ludlum and Xia, 2008, Men et al., 2007]
- We discussed two major DAO approaches
 - column generation method
 - leaf refinement method

References I

Ahuja, R. K. and Hamacher, H. W. (2005).

A network flow algorithm to minimize beam-on time for unconstrained multileaf collimator problems in cancer radiation therapy.

Networks, 45(1):36–41.

Aleman, D. M., Glaser, D., Romeijn, H. E., and Dempsey, J. F. (2010). Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT.

Physics in Medicine and Biology, 55(18):5467–5482.

Baatar, D., Hamacher, H. W., Ehrgott, M., and Woeginger, G. J. (2005). Decomposition of integer matrices and multileaf collimator sequencing. *Discrete Applied Mathematics*, 152(1-3):6–34.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (2006). *Nonlinear programming: theory and algorithms*. Wiley-interscience.

References II

Cassioli, A. and Unkelbach, J. (2013). Aperture shape optimization for IMRT treatment planning. *Physics in Medicine and Biology*, 58(2):301–318.

Engel, K. (2005).

A new algorithm for optimal multileaf collimator field segmentation. *Discrete Applied Mathematics*, 152(1):35–51.

Hårdemark, B., Liander, A., Rehbinder, H., and Löf, J. (2003).

Direct machine parameter optimization with raymachine (\mathbb{R}) in pinnacle3 (\mathbb{R}) .

RaySearch White Paper. Stockholm, Sweden: RaySearch Laboratories AB.

References III

Ludlum, E. and Xia, P. (2008).

Comparison of IMRT planning with two-step and one-step optimization: a way to simplify IMRT.

Physics in Medicine and Biology, 53(3):807-821.

Men, C., Romeijn, H. E., Taşkın, Z. C., and Dempsey, J. F. (2007).

An exact approach to direct aperture optimization in IMRT treatment planning.

Physics in Medicine and Biology, 52(24):7333-7352.

Romeijn, H., Ahuja, R., Dempsey, J., and Kumar, A. (2005).

A column generation approach to radiation therapy treatment planning using aperture modulation.

SIAM Journal on Optimization, 15(3):838-862.

References IV

Webb, S. (2001).

Intensity-modulated radiation therapy.

Institute of Physics Publishing.