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0 Intensity-modulated Radiotherapy (IMRT)

e Sequential Method: Fluence-map Optimization (FMO)
e Sequential Method: Leaf Sequencing (LS)

Q Direct Aperture Optimization (DAO)
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Introduction

Intensity-modulated Radiotherapy (IMRT)

@ In 3D-CRT, radiation fluence across the
opening area of the aperture is constant

@ To better spare organs-at-risk more
fluence modulation is needed

@ Intensity-modulated radiotherapy
(IMRT) is a more recent modality that
allows for more fluence modulation at
each beam

Eigure: (webb, 2001]
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Introduction

Comparing 3D-CRT and IMRT

@ 3D-CRT shapes apertures
that conform to tumor shape

@ IMRT creates a fluence map
(intensity profile) per beam




Introduction

Multi-leaf Collimator (MLC)

@ In IMRT

@ gantry head is equipped with a
multi-leaf collimator (MLC) system

@ MLC leaves form apertures with
different shapes and intensities
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Introduction

Creating Fluence Maps using MLC

@ Using MLC a desired fluence map
can be created
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Introduction

IMRT Treatment Planning

@ IMRT planning is to determine a set of
apertures and their intensities that yield
a dose distribution that
e adequately covers target(s)
e preserves functionality of critical
structures
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Introduction

Solution Approaches to IMRT Treatment Planning
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Introduction

Solution Approaches to IMRT Treatment Planning

@ Sequential method
(1) Beam orientation optimization (BOO)

@ determines a set of beam directions
@ is usually performed manually

(2) Fluence-map optimization (FMO)
@ determines an intensity profile for
each beam
(3) Leaf sequencing (LS)
@ decomposes intensity profiles to
deliverable apertures
@ Direct aperture optimization (DAO)
e integrates FMO and LS




Fluence Map Optimization

Fluence-map Optimization (FMO)

@ Rectangular beams are discretized into
beamlets i € |
@ Using pencil-beam dose calculation ﬁ
method, beamlet dose deposition
coefficients D = [D;,] (i € I, v € V) are
computed
@ Using optimization methods, optimal

fluence maps x; (i € /) are determined 7
e large-scale problem: O (10%) beamlets @
and O (10°) voxels
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Fluence Map Optimization

FMO Mathematical Formulation

@ Mathematical formulation for the FMO problem

min G (d)
subject to
d=D"x
H(d) <0
x>0
@ Notation

@ x: vector of beamlet intensities
e D = [D,]: matrix of beamlet dose deposition coefficients
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Fluence Map Optimization

NLP Solution Approach for FMO

@ FMO problem can be solved using interior-point method
(barrier method)
o see [Bazaraa et al., 2006]
e transform the constrained problem to unconstrained
problem using barrier function
@ sets a barrier against leaving the feasible region
min G(DTX) + 1 B(x) w>0
X N~
barrier

@ Barrier function characteristics are

e nonnegative and continuous over {x:x > 0,H (D"x) <0}
@ approaches co as x approaches the boundary from interior
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Fluence Map Optimization

Barrier Method for FMO

@ We formulate a parametric problem
6 (i) =min G (DTx) + uB (x)
@ It can be shown that

lim_ ¢ (41) = min {G (DTx) :x>0,H (DTx) < o}

u—0t+
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Fluence Map Optimization

Barrier Method for FMO

1 Initialize: choose interior point xo > 0, po > 0, and
0<p<1
2 Main step: at iteration k solve unconstrained problem

min G (DTX> + kB (X)

to obtain optimal solution x
3 Termination condition: if uxB (Xx) < €, stop; otherwise,
tk+1 = Bk and go to step 2

13/70



Fluence Map Optimization

Unconstrained Optimization

@ Consider unconstrained optimization problem
min F (x)

@ X is a global minimum if F (x) < F (x) for all x € R”

@ X is a local minimum if there is an e-neighborhood N, (X)
around x such that F (x) < F (x) for all x € N, (x)

e we assume differentiability
o see [Bazaraa et al., 2006]
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Fluence Map Optimization

Characterizing Local Minimum

@ s is a descent direction at Xx if

im F&+28) — F(%)

= VF(X)"
i, 3 VF(X) s<0

@ Necessary condition: if X is a local minimum, then
VF(X)=0

@ Sufficient condition: if VF (X) = 0 and V2F (X) =~ 0, then X
is a local minimum
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Fluence Map Optimization

Class of Convex Functions

@ Convex functions
o Definition VX, X € R"

FOX+ (1= X)X) < AF(X)+ (1 = X)F(X) A€ (0,1)

e Fis convex if and only if V2F is positive semi-definite
everywhere

@ If F is convex, then X is a global minimum if and only if
VF(X)=0
@ a desired property for unconstrained optimization
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Fluence Map Optimization

Steepest Descent for Unconstrained Optimization

@ Starting from X it iteratively moves toward local minimum
@ Steepest descent at X can be obtained by

minVF (x)'s
subject to
Isll <1
@ which yields
VF (X)

IVE X

X
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Fluence Map Optimization

Steepest Descent for Unconstrained Optimization

1 Initialize: Let € > 0, choose starting point xg
2 Steepest descent direction: At iteration k, let

VF (Xk)

Sk= =g,
T IVE ()l

3 Termination condition: If ||sk|| < € stop; else, go to step 4

4 Line search:

A* = argmin F (X, + ASk)
A>0

5 Update solution: X411 = X, + A*s, and go to step 2
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Fluence Map Optimization

Line Search

@ Line searchis to find optimal step length to move from
point x along direction s

@ ltis rarely possible to obtain analytical solutions

0 F (x+ \s)
o\

@ Numerical methods are commonly used
@ see [Bazaraa et al., 2006]

=s'VF(Xx+Xs)=0
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Fluence Map Optimization

Line Search: Uncertainty Interval

@ Derivative-free numerical solution method for

ar<n/\|gb0 (A) = F(x+Xs)
@ To reduce uncertainty interval [a, b] we evaluate 6 (\) for
different A € [a, b]
@ Suppose @ is strictly quasi-convex (unimodal). Let
A, Ao € [a, b]
@ If6(\) <O(X2),then (X)) > 6 (A) for A € [A2, b]
o If (M) > 0(N2), then 8 (N\) > 0 (X2) for A € [a, M1]
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Fluence Map Optimization

Line Search: Dichotomous Search

1. Initialize: set initial uncertainty interval [ag, bo],
distinguishing param. 2¢ > 0, and threshold param. §

2. Main step: let Ay = ak“’k —eand \ = a“gbk + ¢, then

[aK, A2] 1T O (A1) < 6(A2)
[\, bx] otherwise

(@41, bry1] = {

3. Termination condition, if b, 1 — ax1 < ¢ stop; otherwise,
go to Step 2
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Fluence Map Optimization

Example of FMO Mathematical Formulation

@ Dose evaluation criteria: summation of piecewise quadratic
voxel-based penalties for all relevant structures s € S

2
Tzltr)] G (DTX> = Z Z vd max {Z Di,x; — t,, 0}

seSveVs i€l

overdosing penalty

2
+7vs Max {tv — Z D,'VX,', 0}

iel

underdosing penalty

@ We assume only nonnegativity constraints x > 0, results
can be generalized to include dose constraints
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Fluence Map Optimization

Example of FMO Mathematical Formulation

@ Logarithmic barrier function for nonnegativity of beamlet
intensities

¢ (1) =min G (DTX) — Y In(x)
icl

@ We solve ¢ (u) for u > 0 using Steepest Descent method
@ Alternatively we can use primal-dual interior-point method
@ see [Aleman et al., 2010]
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Fluence Map Optimization

Primal-dual Interior Point Method

@ To obtain ¢(u) we find x* where gradient vanishes

OG(D'X) —puYigin(x) O0G(D'X) pu
d X; N d X; Xj
@ Variable transformation (x, A: primal and dual variables)

7

A= —
Xi

iel
@ Solve nonlinear system of equations for x, A

VXG—)\ZO
AN-X=pe
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Fluence Map Optimization

Primal-dual Interior Point Method

@ Newton method to solve nonlinear system of equation
1. Main step: determine direction and step length

—1
( AX(k) ) __ ( VixG(k) —1 ) ( VXG(k) - A )
Ak Ny X Nky - Xy — 1y @

2. Update solution

X X AX
(k+1) ) k) ) 4+ (k)
( A(k+1) ) ( A(k) ) ) ( AX(k) )
3. Termination condition: if X(T;(+1)>\(k+1) < ¢, then stop;

otherwise go to Step 1
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Leaf Sequencing

Leaf Sequencing Problem

@ How to decompose fluence map into
collection of deliverable apertures?
@ we assume step-and-shoot delivery
@ apertures are binary matrices with
consecutive ones at each row

> o

2% 1x

Intensity (MU)

OO ==
QOO ==
oo —+0O
[elfelelo]
[ellellelo]
o —=+-=0
oo —=+0O
[elfelelo]

o

2

4

3

Column Index Row Index

3x 2%

o =00
o —=--=20
[ellellelo]
[ellellelo]
[elleolleloe]
[ellellele]
o —==0
[ellellelo]
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Leaf Sequencing

Leaf Sequencing (LS)

@ There is a large number of possible decompositions
@ Leaf Sequencing (LS) aims at finding decomposition with
@ minimal total monitor units (beam-on time)
@ minimal number of binary matrices
o total treatment time depends on beam-on time and number
of apertures
@ Assumptions
e there is only row-convexity constraint on aperture shapes

@ see [Baatar et al., 2005] for additional MLC hardware
constraints

@ integral intensities by rounding fluence map X
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Leaf Sequencing

LS Formulation: Minimizing Beam-on Time

@ Beam-on time minimization

keK
subject to
X = Z akSk
keK
ag >0 ke K
@ Notation

o K: setof M x N binary matrices with consecutive-ones
property at each row

@ Sk: binary matrix k € K

@ ay: number of MU for binary matrix k € K
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Leaf Sequencing

Minimizing Beam-on Time: Example

@ Example
> k=5
kekK
2 5 3 1 1 1 0o 1 1 0 0
(342>2<111)+1<100)+2<0 o)
X a1S1 agSz CVBSB

e S, S, S; have positive monitor units
o «ay = 0 for all other binary matrices k € K
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Leaf Sequencing

Minimizing Beam-on Time: Solution Approach

@ Fluence map

@ Difference matrix

- -2 _
X = [ Xm,n—Xm,nq } 23 3 )

Mx(N+1):<3 1 -2 -2

@ Whenever Xy, , > 0, decomposition needs to use interval
with left boundary in bixel m with at least X, , MU.
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Leaf Sequencing

Minimizing Beam-on Time: Solution Approach

@ Sum of positive gradient (SPG)

N+1 N
SPG,, = Z max {)N(m,,,, 0} = Z max {0, Xm n1 — Xmn}
n=1 n=0

SPG(X) = max {SPGn} = max{4,5}

@ SPG(X) provides a lower bound on the required beam-on
time for delivering X

o there are decompositions for which LB can be obtained
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Leaf Sequencing

Minimizing Beam-on Time: Solution Approach

@ One can decompose each fluence row individually

2 5 3
X:(s 4 2)
Xi.=(2 5 3)=> oV
kek

Xo.=(3 4 2)=> oV
keK

@ Row decompositions can be combined to form LS with
minimal beam-on time

. V,
e Sk = Min {aq, agpe } ( V:/ >
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Leaf Sequencing

Minimizing Beam-on Time: Network-flow Model

@ Decomposing fluence row m: (Xm,: ne N)'
@ see [Ahuja and Hamacher, 2005]

@ Let K be the collection of all binary vectors with
consecutive-ones property

min Zak

kek
subject to
ay Xmi
1 0 0 1 1
« X
010 1 1 R I R
0010 1 : :
K X

ax>0 VkekK
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Leaf Sequencing

Minimizing Beam-on Time: Network-flow Model

@ It can be represented using a network-flow model

@ by adding a zero vector at the end of constraint matrix and
subtracting row n from n+1

aq Xm1
0 1 Xm2 - Xm1
-1 1 0 0 a2 | _
0 -1 1 0 N -
0 0 -1 ~1 ok XN — Ximn—1

mN
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Leaf Sequencing

Minimizing Beam-on Time: Network-flow Model

@ Network representation
@ nodes are bixelsn=1,....N+1
@ arcs are binary vectors with consecutive ones k € K
@ nodes have supply/demand
@ What is the minimum-cost flow to satisfy all node
demands?
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Leaf Sequencing

Network-flow Model: Min-cost Flow Algorithm

@ Surplus/demand for node n=1,..., N is defined as
b(n) = Xmn — Xmn—1

@ Flow is sent from nodes with surplus b(n) > 0 to nodes
with demand b(r’) < 0
1 Initialize: up = min{n: b, > 0}, vo = min{n: b, < 0}
2 Main step: at iteration k
A,y = Min{b (ux), —b(vk)}
b(uk) — b(uk) - a(Uk,Vk)
b (Vi) < b (Vi) + a(u,,v)
3 Termination condition: if uy, vi = N + 1, stop; else,
increment accordingly
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Leaf Sequencing

Minimizing Number of Apertures

@ LS with objective of minimizing number of apertures is
more involved
@ belongs to the class of NP-hard problems (see
[Baatar et al., 2005])

@ in contrast with minimizing beam-on time which can be
solved in polynomial time

o fluence rows cannot be decomposed individually
@ Solution approaches seek for decompositions using
minimal number of apertures while constraining beam-on
time to SPG
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Leaf Sequencing

LS Formulation: Minimizing Number of Apertures

@ Minimizing number of apertures

min {lelg
subject to
X = Z akSk
keK

> ok < SPG(X)
keK

ag >0 ke K

@ Notation

o K: setof M x N binary matrices with consecutive-ones
property at each row
@ Sk: binary matrix k € K
@ ay: number of MU for binary matrix k € K
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Leaf Sequencing

Minimizing Number of Apertures: Heuristics

1 Initialize: Xo = X
2 Main step: at iteration k find a, > 0 and a binary matrix Sy
such that

X = X1 — xSk >0
SPG (xk) — SPG (f(k,1) P

3 Termination condition: if X, = 0 stop; else, go to Step 2
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Leaf Sequencing

Minimizing Number of Apertures: Heuristics

1 Initialize: Xo = X

2 Main step: at iteration k find a, > 0 and a binary matrix Sy
such that

X = X1 — xSk >0
SPG (xk) — SPG (f(k,1) P

3 Termination condition: if X, = 0 stop; else, go to Step 2

@ To minimize number of apertures we choose maximum
possible « and corresponding Sy (see [Engel, 2005])
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Leaf Sequencing

Shortcoming of the Sequential Method

@ There is often dose discrepancy between FMO and LS
solutions

@ some LS methods require rounding fluence maps
o limited number of apertures are used
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Leaf Sequencing

Shortcoming of the Sequential Method

@ There is often dose discrepancy between FMO and LS
solutions

@ some LS methods require rounding fluence maps
o limited number of apertures are used

@ Knowledge of shape and intensity of apertures are
required to model several aspects of IMRT treatment plan

@ DAO frameworks have been developed to address these
issues
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Direct Aperture Optimization

Direct Aperture Optimization

@ Direct aperture optimization (DAQO) aims at directly finding
optimal collection of apertures and their intensities

@ FMO and LS are integrated into a single problem
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Direct Aperture Optimization

Direct Aperture Optimization

@ Direct aperture optimization (DAQO) aims at directly finding
optimal collection of apertures and their intensities

@ FMO and LS are integrated into a single problem
@ In contrast with 3D-conformal radiotherapy where
apertures conform to tumor shape in beam’s eye-view, in
DAO any deliverable aperture by MLC may be used

@ We discuss DAO solution methods proposed in
[Romeijn et al., 2005] and [Hardemark et al., 2003]
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Direct Aperture Optimization

Column Generation Method: Formulation

@ Mathematical formulation for the DAO problem

min G (d)
subject to
dv = > Dr¥k veV
keK
Yk >0 ke K
@ Notation

o y = (yk: k € K)': vector of aperture intensities
o D = [Dy,]: matrix of aperture dose deposition coefficients
e d=(d,:ve V) :vector of dose distribution
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Direct Aperture Optimization

DAO Solution Challenges

@ Naive application of convex optimization techniques to this
problem is computationally prohibitive
@ K contains a large number of apertures
e O (10%) deliverable apertures per beam angle
@ We are interested in sparse solutions
e clinically reasonable number of apertures (< 50 per beam)
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Direct Aperture Optimization

DAO Solution Method: Search for Local Minimum

@ Necessary optimality conditions for unconstrained
problems (i.e., VF (y) = 0) can be extended to constrained
ones

@ Ify is a local minimum, then, under some regularity
conditions, it satisfies Karush-Kuhn-Tucker (KKT)
conditions

@ For a convex problem with affine equality constraints, KKT
conditions are necessary and sufficient for global optimality
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Direct Aperture Optimization

KKT Optimality Conditions

@ If y is a local minimum, then there exist vectors of
Lagrange multipliers u, v such that this system of
equations are satisfied

VF{)+ > UVP(¥)+
min F (y) tely
Z WV (y)=0
s.t.
lely
Pi(y) <0 le Ly uP(y)=0 0 e Ly
Q(y)=0 (el P, (y) <0 (e Ly
Q(y)=0 Lel,

u >0 e Ly
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Direct Aperture Optimization

KKT Conditions for DAO

@ KKT conditions for the DAO problem are as follows:

min G (d)
bj 0G T 0 veV
subject to — Ty =

J 8dv d:a v

dy=> Dy VeV Y Dumy—pk=0 keK
kek veV
Yk >0 keK Ykrk =0 ke K
Yk >0 ke K
@ , p: vectors of voxels and dv = ’Z;(Dkvyk veVv
apertures Lagrange

b grang pk >0 ke K

multipliers
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Direct Aperture Optimization

DAO Solution Approach

@ We aim at finding (y,d,#, p) that satisfy KKT conditions
@ Due to large number of apertures we cannot incorporate all
of them

@ We start by considering only a subset of apertures KcK
and sequentially add remaining ones until KKT conditions
are all met
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Direct Aperture Optimization

DAO Solution Approach: Restricted Problem

@ Consider restricted DAO problem in which K c K

min G (d)
subject to
dv =Y DivYk vevV
kek
Yk 20 kekK

@ This can be solved using a constrained optimization
method to obtain (y*,d*)

@ barrier method or projected gradient method
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Direct Aperture Optimization

Restricted DAO Problem: KKT Conditions

@ Solution (y*,d*) satisfies KKT conditions for the restricted

DAO problem
dy =" Dy veV
kek
0G
* — V
™ ad, - Ve
P;; = Z Dy, kek
veV
YipPk =0 kek
Yk =0,p =0 kekK
o f kek
@ We then construct solution y as yx = Vi < A
0 keK\K
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Direct Aperture Optimization

DAO Solution Approach: KKT Conditions

@ We substitute y in KKT conditions of original DAO problem

av:ZDkv}_/k veV
kekK
oG
szadVda veV
ﬁk:ZIDkvﬁv keK
veV
YkPk = ke K  why?
¥ >0 keK
Yie = keK\K
pk >0 kek why?

Pk >0 ke K\K 7
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Direct Aperture Optimization

DAO Solution Approach: Pricing Problem

@ To ensure if px > 0 for k € K we formulate and solve the
pricing problem

min px = Dy, T
kerk Z kvTv
veV
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Direct Aperture Optimization

DAO Solution Approach: Pricing Problem

@ To ensure if px > 0 for k € K we formulate and solve the
pricing problem

min px = Dy, T
kerk Z kvTv
veV

@ Aperture k € K consists of a collection, Ak, of exposed

beamlets i ¢ |
Dyy = Z Dy,
iEAk
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Direct Aperture Optimization

DAO Solution Approach: Pricing Problem

@ To ensure if px > 0 for k € K we formulate and solve the
pricing problem

min px = Dy, T
kerk Z kvTv
veV

@ Aperture k € K consists of a collection, Ak, of exposed
beamlets i € /
Dyy = Z Dy,
i€Ax

@ Pricing problem is reformulated using beamlet dose
deposition coefficients

min > > D
€A, veV
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Direct Aperture Optimization

DAO Solution Approach: Pricing Problem

@ It finds aperture k with most negative
Lagrange multiplier aty

@ py: rate of change in G as intensity of
aperture k increases (reduced gradient)

min fx = > D

icAx veV 5 I'l 21311

— 4i3|1i3]2

beamlet i’'s FERE RN B

e given reduced gradient of all beamlets, it 1 241113

finds collection of beamlets that

@ forms a deliverable aperture
@ has most negative cumulative reduced
gradient
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Direct Aperture Optimization

Pricing Problem: Pricing Problem

@ Pricing problem can be solved for individual beam angles
beB
min p
kGIKb Pk
@ Pricing problem can be separated over beamlet rows

o finding a sub sequence of beamlets with most negative
cumulative reduced gradient

|2

A]3]|-2]1

-2|2

_1‘
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Direct Aperture Optimization

Pricing Problem: Minimum Subsequent Sum

@ It can be solved by a single pass over bealmests in a row
i=1,....N

1 Initialize: b; =), .\ Diyny for i € I, minSoFar = 0,
minEndingHere = 0

2 Mainstep: Fori=1:N
minEndingHere = min {O, minEndingHere + b,}
minSoFar = min {minEndingHere, minSoFar}

3 Output: minSoFar

@ The pricing problem can be extended to incorporate
additional MLC hardware constraints
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Direct Aperture Optimization

Column Generation Method

——
@ Column generation method for
DAO solves restricted and pricing solve Restricted
problems iteratively Problem
@ common appro.ac.h tq solve ! Dodate R
large-scale optimization solve Pricing P
problems Problem
@ It can be terminated if no
promising aperture exists or if
Promising

current solution is satisfactory Aperture?
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Direct Aperture Optimization

Leaf Refinement Problem

@ Given a fixed number of apertures, the leaf
refinement problem aims at finding their
optimal leaf positions as well as their
intensities

o see [Hardemark et al., 2003,
Cassioli and Unkelbach, 2013]

@ Major difference from column generation
approach is that the number of apertures is
fixed
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Direct Aperture Optimization

Leaf Refinement Method: Dose Deposition

@ Expressing dose deposited in voxel v € V in terms of
aperture intensities and leaf positions

a (xx.y) = 3 3 (ot (xme) ot (5o

keK  meM
@ Notation

o y=(yk:keK)': vector of aperture intensities

o xO = ( x me M, ke K) : vector of left leaf positions

o x(0 = ( XD me M ke K : vector of right leaf positions

° o)y (X): dose deposited in voxel v € V under unit intensity
from row m € M in beam angle b € B when interval [0, x] is
exposed
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Direct Aperture Optimization

Leaf Refinement Method: Dose Deposition

@ Given beamlet dose deposition coefficient matrix [Dy, ], ¢;,,
can be approximated using a piecewise-linear function

v
mb

5]
n
5
2|

Dose (Gy)

Beamlet
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Direct Aperture Optimization

Leaf Refinement Problem: Formulation

@ Mathematical formulation

min G (d (z))
subject to
Ax <0
Hd(x,y)) <0 — F(d(z)) <0 tel
y>0
° Notation

= (d, : v e V)" vector of dose distribution
=(yk:keK )T: vector of aperture intensities

o z= (x x® y)": vector of all variables
o A: constramt matrix of leaf positions
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Direct Aperture Optimization

Leaf Refinement Problem: Solution Approach

@ Sequential quadratic programming (SQP) can be used
@ SQP aims at finding a solution that satisfies KKT conditions

VG(2)+ ) wVF(2)=0
lel
uFe(z) =0 tel
u>0

@ One can use Newton method to solve this system

o Lagrangianis definedas L= G+, uF,
o we let

VFS
VF' = :
VF
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Direct Aperture Optimization

Sequential Quadratic Programming

@ Newton method at iteration k requires to solve
V2L VFik

UNF‘L) Figy 0 -+ 0 ( z -z )_
UQVFZ K) 0 Fg(k)- -0 u-— U(k)
uVFy 0 0 - Fiu
VG + > per Uk V Fiy

Ut F1e)

U (k) Frky
this reduces to

Vzﬁ(k) (Z — Z(k)) + VF(—;)U = —VG(k)
Uy <VFZ—|(—k) (Z — Z(k)) + Fg(k)) =0 el
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Direct Aperture Optimization

Sequential Quadratic Programming

@ Along with u > 0 these are also KKT conditions for the
following quadratic programming (QP) problem

: 1
min Gk + VGV + §\,TVZ,/;(,()V
subject to
VFiV + Fuxy <0 tel

in which we substituted v = z — z(4,
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Direct Aperture Optimization

Sequential Quadratic Programming

@ One can alternatively solve this QP problem at iteration k
of Newton method

@ objective function is quadratic approximation of G plus
curvature of constraints at z = z,
@ constraints are linear approximation of F; (¢ € L) at z = z,
@ The QP problem requires computing vzc(k)

e computationally expensive
@ may not be positive definite
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Sequential Quadratic Programming: BFGS Update

@ To overcome this issue quasi-newton method is employed
Vzﬁ(k) ~ B(k) ~ 0

@ Positive definite approximations of Hessian using
(Broyden-Fletcher-Goldfarb-Shanno) BFGS update
Adw9k  BrPwP Bk
0P P BP0
Pk = Z(kt1) = 2Z(k) Gk = VELk+1) = VL)

Bik+1) = B +
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Leaf Refinement Method: SQP

1 Initialization: select initial variables z ), lagrange
multipliers ug), and Hessian p.d. approximation B,

2 Main Step: at iteration k solve the QP problem

1
; T T
mv|n G(k) + VG(k)V + EV B(k)v
subject to

Fuky + VFijigv < 0 tel

3 Termination condition: if |[v*|| < e, stop; otherwise,
2k 1) = Z(x) + V", update B4 1) using BFGS method and
go to Step 2
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Summary: DAO

@ DAO aims at directly solving for aperture shape and
intensities
@ DAO plans employ fewer apertures and shorter beam-on

times compared to two-stage method to obtain similar
dose conformity

o see [Ludlum and Xia, 2008, Men et al., 2007]
@ We discussed two major DAO approaches

@ column generation method
o leaf refinement method
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