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1 Intensity-modulated Radiotherapy (IMRT)

2 Sequential Method: Fluence-map Optimization (FMO)
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Intensity-modulated Radiotherapy (IMRT)

In 3D-CRT, radiation fluence across the
opening area of the aperture is constant
To better spare organs-at-risk more
fluence modulation is needed
Intensity-modulated radiotherapy
(IMRT) is a more recent modality that
allows for more fluence modulation at
each beam

Figure: [Webb, 2001]
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Comparing 3D-CRT and IMRT

3D-CRT shapes apertures
that conform to tumor shape
IMRT creates a fluence map
(intensity profile) per beam
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Multi-leaf Collimator (MLC)

In IMRT
gantry head is equipped with a
multi-leaf collimator (MLC) system
MLC leaves form apertures with
different shapes and intensities
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Creating Fluence Maps using MLC

Using MLC a desired fluence map
can be created
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IMRT Treatment Planning

IMRT planning is to determine a set of
apertures and their intensities that yield
a dose distribution that

adequately covers target(s)
preserves functionality of critical
structures
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Solution Approaches to IMRT Treatment Planning

Sequential method
(1) Beam orientation optimization (BOO)

determines a set of beam directions
is usually performed manually

(2) Fluence-map optimization (FMO)
determines an intensity profile for
each beam

(3) Leaf sequencing (LS)
decomposes intensity profiles to
deliverable apertures

Direct aperture optimization (DAO)
integrates FMO and LS
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Fluence-map Optimization (FMO)

Rectangular beams are discretized into
beamlets i ∈ I
Using pencil-beam dose calculation
method, beamlet dose deposition
coefficients D = [Div ] (i ∈ I, v ∈ V ) are
computed
Using optimization methods, optimal
fluence maps xi (i ∈ I) are determined

large-scale problem: O
(
103
)

beamlets
and O

(
105
)

voxels
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FMO Mathematical Formulation

Mathematical formulation for the FMO problem

min G (d)

subject to

d = D>x
H (d) ≤ 0

x ≥ 0

Notation
x: vector of beamlet intensities
D = [Div ]: matrix of beamlet dose deposition coefficients
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NLP Solution Approach for FMO

FMO problem can be solved using interior-point method
(barrier method)

see [Bazaraa et al., 2006]
transform the constrained problem to unconstrained
problem using barrier function
sets a barrier against leaving the feasible region

min
x

G
(

D>x
)

+ µB (x)︸ ︷︷ ︸
barrier

µ > 0

Barrier function characteristics are
nonnegative and continuous over

{
x : x ≥ 0,H

(
D>x

)
≤ 0

}
approaches∞ as x approaches the boundary from interior
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Barrier Method for FMO

We formulate a parametric problem

φ (µ) = min
x

G
(

D>x
)

+ µB (x)

It can be shown that

lim
µ→0+

φ (µ) = min
x

{
G
(

D>x
)

: x ≥ 0,H
(

D>x
)
≤ 0

}
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Barrier Method for FMO

1 Initialize: choose interior point x0 > 0, µ0 > 0, and
0 < β < 1

2 Main step: at iteration k solve unconstrained problem

min
x

G
(

D>x
)

+ µkB (x)

to obtain optimal solution xk

3 Termination condition: if µkB (xk ) < ε, stop; otherwise,
µk+1 = βµk and go to step 2
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Unconstrained Optimization

Consider unconstrained optimization problem

min F (x)

x̄ is a global minimum if F (x̄) ≤ F (x) for all x ∈ Rn

x̄ is a local minimum if there is an ε-neighborhood Nε (x̄)
around x̄ such that F (x̄) ≤ F (x) for all x ∈ Nε (x̄)

we assume differentiability
see [Bazaraa et al., 2006]
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Characterizing Local Minimum

s is a descent direction at x̄ if

lim
λ→0+

F (x̄ + λs)− F (x̄)

λ
= ∇F (x̄)> s < 0

Necessary condition: if x̄ is a local minimum, then
∇F (x̄) = 0
Sufficient condition: if ∇F (x̄) = 0 and ∇2F (x̄) � 0, then x̄
is a local minimum
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Class of Convex Functions

Convex functions
Definition ∀ x̄, x̂ ∈ Rn

F (λx̄ + (1− λ)x̂) ≤ λF (x̄) + (1− λ)F (x̂) λ ∈ (0,1)

F is convex if and only if ∇2F is positive semi-definite
everywhere

If F is convex, then x̄ is a global minimum if and only if
∇F (x̄) = 0

a desired property for unconstrained optimization
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Steepest Descent for Unconstrained Optimization

Starting from x̄ it iteratively moves toward local minimum
Steepest descent at x̄ can be obtained by

min∇F (x̄)> s

subject to

‖s‖ ≤ 1

which yields

s = − ∇F (x̄)

‖∇F (x̄)‖
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Steepest Descent for Unconstrained Optimization

1 Initialize: Let ε > 0, choose starting point x0

2 Steepest descent direction: At iteration k , let

sk = − ∇F (xk )

‖∇F (xk )‖

3 Termination condition: If ‖sk‖ < ε stop; else, go to step 4
4 Line search:

λ∗ = argmin
λ≥0

F (xk + λsk )

5 Update solution: xk+1 = xk + λ∗sk and go to step 2
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Line Search

Line search is to find optimal step length to move from
point x along direction s
It is rarely possible to obtain analytical solutions

∂ F (x + λs)

∂ λ
= s>∇F (x + λs) = 0

Numerical methods are commonly used
see [Bazaraa et al., 2006]

19 / 70



logo

Introduction Fluence Map Optimization Leaf Sequencing Direct Aperture Optimization

Line Search: Uncertainty Interval

Derivative-free numerical solution method for

min
a≤λ≤b

θ (λ) = F (x + λs)

To reduce uncertainty interval [a,b] we evaluate θ (λ) for
different λ ∈ [a,b]

Suppose θ is strictly quasi-convex (unimodal). Let
λ1, λ2 ∈ [a,b]

If θ (λ1) ≤ θ (λ2), then θ (λ) ≥ θ (λ1) for λ ∈ [λ2,b]
If θ (λ1) ≥ θ (λ2), then θ (λ) ≥ θ (λ2) for λ ∈ [a, λ1]
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Line Search: Dichotomous Search

1. Initialize: set initial uncertainty interval [a0,b0],
distinguishing param. 2ε > 0, and threshold param. δ

2. Main step: let λ1 = ak +bk
2 − ε and λ2 = ak +bk

2 + ε, then

[ak+1,bk+1] =

{
[ak , λ2] if θ (λ1) ≤ θ (λ2)

[λ1,bk ] otherwise

3. Termination condition, if bk+1 − ak+1 < δ stop; otherwise,
go to Step 2
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Example of FMO Mathematical Formulation

Dose evaluation criteria: summation of piecewise quadratic
voxel-based penalties for all relevant structures s ∈ S

min
x≥0

G
(

D>x
)

=
∑
s∈S

∑
v∈Vs

γ+
s max

{∑
i∈I

Div xi − tv ,0

}2

︸ ︷︷ ︸
overdosing penalty

+γ−s max

{
tv −

∑
i∈I

Div xi ,0

}2

︸ ︷︷ ︸
underdosing penalty

We assume only nonnegativity constraints x ≥ 0, results
can be generalized to include dose constraints
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Example of FMO Mathematical Formulation

Logarithmic barrier function for nonnegativity of beamlet
intensities

φ (µ) = min
x

G
(

D>x
)
− µ

∑
i∈I

ln (xi)

We solve φ (µ) for µ > 0 using Steepest Descent method
Alternatively we can use primal-dual interior-point method

see [Aleman et al., 2010]

23 / 70



logo

Introduction Fluence Map Optimization Leaf Sequencing Direct Aperture Optimization

Primal-dual Interior Point Method

To obtain φ(µ) we find x∗ where gradient vanishes

∂G
(
D>x

)
− µ

∑
i∈I ln (xi)

∂ xi
=
∂G

(
D>x

)
∂ xi

− µ

xi
= 0 i ∈ I

Variable transformation (x , λ: primal and dual variables)

λi =
µ

xi
i ∈ I

Solve nonlinear system of equations for x,λ

∇xG − λ = 0
Λ · X = µe
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Primal-dual Interior Point Method

Newton method to solve nonlinear system of equation
1. Main step: determine direction and step length(

∆x(k)

∆λ(k)

)
= −

(
∇2

xxG(k) −I
Λ(k) X(k)

)−1( ∇xG(k) − λ
Λ(k) · X(k) − µ(k) e

)
2. Update solution(

x(k+1)

λ(k+1)

)
=

(
x(k)

λ(k)

)
+ α(k)

(
∆x(k)

∆λ(k)

)
3. Termination condition: if x>(k+1)λ(k+1) < ε, then stop;

otherwise go to Step 1
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Leaf Sequencing Problem

How to decompose fluence map into
collection of deliverable apertures?

we assume step-and-shoot delivery
apertures are binary matrices with
consecutive ones at each row
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1
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0
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0
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0
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Leaf Sequencing (LS)

There is a large number of possible decompositions
Leaf Sequencing (LS) aims at finding decomposition with

minimal total monitor units (beam-on time)
minimal number of binary matrices
total treatment time depends on beam-on time and number
of apertures

Assumptions
there is only row-convexity constraint on aperture shapes

see [Baatar et al., 2005] for additional MLC hardware
constraints

integral intensities by rounding fluence map X
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LS Formulation: Minimizing Beam-on Time

Beam-on time minimization

min
∑
k∈K

αk

subject to

X =
∑
k∈K

αkSk

αk ≥ 0 k ∈ K

Notation
K : set of M × N binary matrices with consecutive-ones
property at each row
Sk : binary matrix k ∈ K
αk : number of MU for binary matrix k ∈ K
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Minimizing Beam-on Time: Example

Example ∑
k∈K

αk = 5

(
2 5 3
3 4 2

)
︸ ︷︷ ︸

X

= 2
(

1 1 1
1 1 1

)
︸ ︷︷ ︸

α1S1

+ 1
(

0 1 1
1 0 0

)
︸ ︷︷ ︸

α2S2

+ 2
(

0 1 0
0 1 0

)
︸ ︷︷ ︸

α3S3

S1,S2,S3 have positive monitor units
αk = 0 for all other binary matrices k ∈ K
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Minimizing Beam-on Time: Solution Approach

Fluence map

X =

(
2 5 3
3 4 2

)
Difference matrix

X̃ =
[

Xm,n − Xm,n−1
]

M×(N+1)
=

(
2 3 −2 −3
3 1 −2 −2

)
Whenever X̃m,n > 0, decomposition needs to use interval
with left boundary in bixel m with at least X̃m,n MU.
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Minimizing Beam-on Time: Solution Approach

Sum of positive gradient (SPG)

SPGm =
N+1∑
n=1

max
{

X̃m,n,0
}

=
N∑

n=0

max
{

0,Xm,n+1 − Xm,n
}

SPG(X ) = max
m
{SPGm} = max {4,5}

SPG(X ) provides a lower bound on the required beam-on
time for delivering X

there are decompositions for which LB can be obtained
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Minimizing Beam-on Time: Solution Approach

One can decompose each fluence row individually

X =

(
2 5 3
3 4 2

)
X1· =

(
2 5 3

)
→
∑
k∈K

α1kVk

X2· =
(

3 4 2
)
→
∑
k∈K

α2kVk

Row decompositions can be combined to form LS with
minimal beam-on time

αk ′′Sk ′′ = min {α1k , α2k ′}
(

Vk
Vk ′

)
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Minimizing Beam-on Time: Network-flow Model

Decomposing fluence row m: (Xmn : n ∈ N)>

see [Ahuja and Hamacher, 2005]
Let K be the collection of all binary vectors with
consecutive-ones property

min
∑
k∈K

αk

subject to

 1 0 0 1 . . . 1
0 1 0 1 . . . 1
0 0 1 0 . . . 1




α1
α2
...
αK

 =


Xm1
Xm2

...
XmN


αk ≥ 0 ∀k ∈ K
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Minimizing Beam-on Time: Network-flow Model

It can be represented using a network-flow model
by adding a zero vector at the end of constraint matrix and
subtracting row n from n+1


1 0 0 . . . 1
−1 1 0 . . . 0
0 −1 1 . . . 0
0 0 −1 . . . −1




α1
α2
...
αK

 =


Xm1

Xm2 − Xm1
...

XmN − XmN−1
−XmN
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Minimizing Beam-on Time: Network-flow Model

Network representation
nodes are bixels n = 1, . . . ,N + 1
arcs are binary vectors with consecutive ones k ∈ K
nodes have supply/demand

What is the minimum-cost flow to satisfy all node
demands?

1

Xm1

2

Xm2 − Xm1

3

Xm3 − Xm2

. . . N

XmN − XmN−1

N+1

−XmN

1

1

1
1

1

1
1

1
1

1

1
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Network-flow Model: Min-cost Flow Algorithm

Surplus/demand for node n = 1, . . . ,N is defined as

b(n) = Xmn − Xmn−1

Flow is sent from nodes with surplus b(n) > 0 to nodes
with demand b (n′) < 0

1 Initialize: u0 = min {n : bn > 0}, v0 = min {n : bn < 0}
2 Main step: at iteration k

α(uk ,vk ) = min {b (uk ) ,−b (vk )}
b (uk )← b (uk )− α(uk ,vk )

b (vk )← b (vk ) + α(uk ,vk )

3 Termination condition: if uk , vk = N + 1, stop; else,
increment accordingly
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Minimizing Number of Apertures

LS with objective of minimizing number of apertures is
more involved

belongs to the class of NP-hard problems (see
[Baatar et al., 2005])

in contrast with minimizing beam-on time which can be
solved in polynomial time

fluence rows cannot be decomposed individually

Solution approaches seek for decompositions using
minimal number of apertures while constraining beam-on
time to SPG
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LS Formulation: Minimizing Number of Apertures

Minimizing number of apertures

min ‖α‖0
subject to

X =
∑
k∈K

αkSk∑
k∈K

αk ≤ SPG(X )

αk ≥ 0 k ∈ K

Notation
K : set of M × N binary matrices with consecutive-ones
property at each row
Sk : binary matrix k ∈ K
αk : number of MU for binary matrix k ∈ K
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Minimizing Number of Apertures: Heuristics

1 Initialize: X̂0 = X
2 Main step: at iteration k find αk > 0 and a binary matrix Sk

such that

X̂k = X̂k−1 − αkSk ≥ 0

SPG
(

X̂k

)
= SPG

(
X̂k−1

)
− αk

3 Termination condition: if X̂k = 0 stop; else, go to Step 2
To minimize number of apertures we choose maximum
possible αk and corresponding Sk (see [Engel, 2005])
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Shortcoming of the Sequential Method

There is often dose discrepancy between FMO and LS
solutions

some LS methods require rounding fluence maps
limited number of apertures are used

Knowledge of shape and intensity of apertures are
required to model several aspects of IMRT treatment plan
DAO frameworks have been developed to address these
issues
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Direct Aperture Optimization

Direct aperture optimization (DAO) aims at directly finding
optimal collection of apertures and their intensities

FMO and LS are integrated into a single problem

In contrast with 3D-conformal radiotherapy where
apertures conform to tumor shape in beam’s eye-view, in
DAO any deliverable aperture by MLC may be used
We discuss DAO solution methods proposed in
[Romeijn et al., 2005] and [Hårdemark et al., 2003]
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Column Generation Method: Formulation

Mathematical formulation for the DAO problem

min G (d)

subject to

dv =
∑
k∈K

Dkv yk v ∈ V

yk ≥ 0 k ∈ K

Notation
y = (yk : k ∈ K )>: vector of aperture intensities
D = [Dkv ]: matrix of aperture dose deposition coefficients
d = (dv : v ∈ V )>: vector of dose distribution

42 / 70



logo

Introduction Fluence Map Optimization Leaf Sequencing Direct Aperture Optimization

DAO Solution Challenges

Naive application of convex optimization techniques to this
problem is computationally prohibitive
K contains a large number of apertures

O
(
1045

)
deliverable apertures per beam angle

We are interested in sparse solutions
clinically reasonable number of apertures (≤ 50 per beam)
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DAO Solution Method: Search for Local Minimum

Necessary optimality conditions for unconstrained
problems (i.e., ∇F (ȳ) = 0) can be extended to constrained
ones
If ȳ is a local minimum, then, under some regularity
conditions, it satisfies Karush-Kuhn-Tucker (KKT)
conditions
For a convex problem with affine equality constraints, KKT
conditions are necessary and sufficient for global optimality
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KKT Optimality Conditions

If ȳ is a local minimum, then there exist vectors of
Lagrange multipliers ū, v̄ such that this system of
equations are satisfied

min F (y)

s.t.

P` (y) ≤ 0 ` ∈ L1

Q` (y) = 0 ` ∈ L2

∇F (ȳ) +
∑
`∈L1

ū`∇P` (ȳ) +

∑
`∈L2

v̄`∇Q` (ȳ) = 0

ū`P` (ȳ) = 0 ` ∈ L1

P` (ȳ) ≤ 0 ` ∈ L1

Q` (ȳ) = 0 ` ∈ L2

ū` ≥ 0 ` ∈ L1
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KKT Conditions for DAO

KKT conditions for the DAO problem are as follows:

min G (d)

subject to

dv =
∑
k∈K

Dkv yk v ∈ V

yk ≥ 0 k ∈ K

π,ρ: vectors of voxels and
apertures Lagrange
multipliers

∂G
∂ dv

∣∣∣∣
d=d̄
− πv = 0 v ∈ V∑

v∈V

Dkvπv − ρk = 0 k ∈ K

ykρk = 0 k ∈ K
yk ≥ 0 k ∈ K

dv =
∑
k∈K

Dkv yk v ∈ V

ρk ≥ 0 k ∈ K
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DAO Solution Approach

We aim at finding
(
ȳ, d̄, π̄, ρ̄

)
that satisfy KKT conditions

Due to large number of apertures we cannot incorporate all
of them
We start by considering only a subset of apertures K̂ ⊂ K
and sequentially add remaining ones until KKT conditions
are all met
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DAO Solution Approach: Restricted Problem

Consider restricted DAO problem in which K̂ ⊂ K

min G (d)

subject to

dv =
∑
k∈K̂

Dkv yk v ∈ V

yk ≥ 0 k ∈ K̂

This can be solved using a constrained optimization
method to obtain (y∗,d∗)

barrier method or projected gradient method

48 / 70



logo

Introduction Fluence Map Optimization Leaf Sequencing Direct Aperture Optimization

Restricted DAO Problem: KKT Conditions

Solution (y∗,d∗) satisfies KKT conditions for the restricted
DAO problem

d∗v =
∑
k∈K̂

Dkv y∗k v ∈ V

π∗v =
∂G
∂ dv

∣∣∣∣
d=d∗

v ∈ V

ρ∗k =
∑
v∈V

Dkvπ
∗
v k ∈ K̂

y∗k ρ
∗
k = 0 k ∈ K̂

y∗k ≥ 0 , ρ∗k ≥ 0 k ∈ K̂

We then construct solution ȳ as ȳk =

{
y∗k k ∈ K̂
0 k ∈ K \ K̂
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DAO Solution Approach: KKT Conditions

We substitute ȳ in KKT conditions of original DAO problem

d̄v =
∑
k∈K

Dkv ȳk v ∈ V

π̄v =
∂G
∂ dv

∣∣∣∣
d=d̄

v ∈ V

ρ̄k =
∑
v∈V

Dkv π̄v k ∈ K

ȳk ρ̄k = 0 k ∈ K why?

ȳk ≥ 0 k ∈ K̂

ȳk = 0 k ∈ K \ K̂

ρ̄k ≥ 0 k ∈ K̂ why?

ρ̄k ≥ 0 k ∈ K \ K̂ ?
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DAO Solution Approach: Pricing Problem

To ensure if ρ̄k ≥ 0 for k ∈ K we formulate and solve the
pricing problem

min
k∈K

ρ̄k =
∑
v∈V

Dkv π̄v

Aperture k ∈ K consists of a collection, Ak , of exposed
beamlets i ∈ I

Dkv ≈
∑
i∈Ak

Div

Pricing problem is reformulated using beamlet dose
deposition coefficients

min
k∈K

∑
i∈Ak

∑
v∈V

Div π̄v
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DAO Solution Approach: Pricing Problem

It finds aperture k with most negative
Lagrange multiplier at ȳ

ρ̄k : rate of change in G as intensity of
aperture k increases (reduced gradient)

min
k∈K

ρ̄k =
∑
i∈Ak

∑
v∈V

Div π̄v︸ ︷︷ ︸
beamlet i’s

given reduced gradient of all beamlets, it
finds collection of beamlets that

forms a deliverable aperture
has most negative cumulative reduced
gradient
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Pricing Problem: Pricing Problem

Pricing problem can be solved for individual beam angles
b ∈ B

min
k∈Kb

ρ̄k

Pricing problem can be separated over beamlet rows
finding a sub sequence of beamlets with most negative
cumulative reduced gradient

2 -1 3 -2 1 -2 2 -1
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Pricing Problem: Minimum Subsequent Sum

It can be solved by a single pass over bealmests in a row
i = 1, . . . ,N

1 Initialize: bi =
∑

v∈V Divπv for i ∈ I, minSoFar = 0,
minEndingHere = 0

2 Main step: For i = 1 : N

minEndingHere = min
{

0,minEndingHere + bi

}
minSoFar = min

{
minEndingHere,minSoFar

}
3 Output: minSoFar

The pricing problem can be extended to incorporate
additional MLC hardware constraints
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Column Generation Method

Column generation method for
DAO solves restricted and pricing
problems iteratively

common approach to solve
large-scale optimization
problems

It can be terminated if no
promising aperture exists or if
current solution is satisfactory
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Leaf Refinement Problem

Given a fixed number of apertures, the leaf
refinement problem aims at finding their
optimal leaf positions as well as their
intensities

see [Hårdemark et al., 2003,
Cassioli and Unkelbach, 2013]

Major difference from column generation
approach is that the number of apertures is
fixed
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Leaf Refinement Method: Dose Deposition

Expressing dose deposited in voxel v ∈ V in terms of
aperture intensities and leaf positions

dv

(
x(l),x(r),y

)
≡
∑
k∈K

yk

∑
m∈M

(
φv

mb(k)

(
x (r)

mk

)
− φv

mb(k)

(
x (l)

mk

))
Notation

y = (yk : k ∈ K )>: vector of aperture intensities

x(l) =
(

x (l)
mk : m ∈ M, k ∈ K

)>
: vector of left leaf positions

x(r) =
(

x (r)
mk : m ∈ M, k ∈ K

)>
: vector of right leaf positions

φv
mb (x): dose deposited in voxel v ∈ V under unit intensity

from row m ∈ M in beam angle b ∈ B when interval [0, x ] is
exposed

57 / 70



logo

Introduction Fluence Map Optimization Leaf Sequencing Direct Aperture Optimization

Leaf Refinement Method: Dose Deposition

Given beamlet dose deposition coefficient matrix [Div ], φv
mb

can be approximated using a piecewise-linear function

0 1 2 3 4
0

1

2

3

4

5

Beamlet

D
os

e
(G

y)

φv
mb

x

Div
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Leaf Refinement Problem: Formulation

Mathematical formulation

min G (d (z))

subject to

Ax ≤ 0
H (d (x,y)) ≤ 0

y ≥ 0
→ F` (d (z)) ≤ 0 ` ∈ L

Notation
d = (dv : v ∈ V )>: vector of dose distribution
y = (yk : k ∈ K )>: vector of aperture intensities
z =

(
x(l) x(r) y

)>
: vector of all variables

A: constraint matrix of leaf positions
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Leaf Refinement Problem: Solution Approach

Sequential quadratic programming (SQP) can be used
SQP aims at finding a solution that satisfies KKT conditions

∇G (z) +
∑
`∈L

u`∇F` (z) = 0

u`F` (z) = 0 ` ∈ L
u ≥ 0

One can use Newton method to solve this system
Lagrangian is defined as L ≡ G +

∑
`∈L u`F`

we let

∇F> =

 ∇F>1
...
∇F>L
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Sequential Quadratic Programming

Newton method at iteration k requires to solve
∇2L(k) ∇F>(k)

u1∇F>1(k)

u2∇F>2(k)

uL∇F>L(k)

F1(k) 0 · · · 0
0 F2(k)· · · 0
0 0 · · ·FL(k)


(

z− z(k)

u− u(k)

)
=

−


∇G(k) +

∑
`∈L u`(k)∇F(k)

u1(k)F1(k)

...
uL(k)FL(k)


this reduces to

∇2L(k)

(
z− z(k)

)
+∇F>(k)u = −∇G(k)

u`
(
∇F>`(k)

(
z− z(k)

)
+ F`(k)

)
= 0 ` ∈ L
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Sequential Quadratic Programming

Along with u ≥ 0 these are also KKT conditions for the
following quadratic programming (QP) problem

min G(k) +∇G>(k)v +
1
2

v>∇2L(k)v

subject to

∇F>`(k)v + F`(k) ≤ 0 ` ∈ L

in which we substituted v = z− z(k)
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Sequential Quadratic Programming

One can alternatively solve this QP problem at iteration k
of Newton method

objective function is quadratic approximation of G plus
curvature of constraints at z = zk
constraints are linear approximation of F` (` ∈ L) at z = zk

The QP problem requires computing ∇2L(k)

computationally expensive
may not be positive definite
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Sequential Quadratic Programming: BFGS Update

To overcome this issue quasi-newton method is employed

∇2L(k) ≈ B(k) � 0

Positive definite approximations of Hessian using
(Broyden-Fletcher-Goldfarb-Shanno) BFGS update

B(k+1) = B(k) +
q(k)q>(k)

q>(k)p(k)

−
B(k)p(k)p>(k)B(k)

p>(k)B(k)p(k)

pk = z(k+1) − z(k) qk = ∇L(k+1) −∇L(k)
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Leaf Refinement Method: SQP

1 Initialization: select initial variables z(0), lagrange
multipliers u(0), and Hessian p.d. approximation B(0)

2 Main Step: at iteration k solve the QP problem

min
v

G(k) +∇G>(k)v +
1
2

v>B(k)v

subject to

F`(k) +∇F>`(k)v ≤ 0 ` ∈ L

3 Termination condition: if ‖v∗‖ < ε, stop; otherwise,
z(k+1) = z(k) + v∗, update B(k+1) using BFGS method and
go to Step 2
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Summary: DAO

DAO aims at directly solving for aperture shape and
intensities
DAO plans employ fewer apertures and shorter beam-on
times compared to two-stage method to obtain similar
dose conformity

see [Ludlum and Xia, 2008, Men et al., 2007]
We discussed two major DAO approaches

column generation method
leaf refinement method
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