An analytical approximation of the Bragg curve for therapeutic
proton beams

Thomas Bortfeld®
Deutsches Krebsforschungszentrum (DKFZ), Abteilung Medizinische Physik and Univeesitalberg,
Fakulta fur Physik und Astronomie, Heidelberg, Germany

(Received 28 October 1996; accepted for publication 17 Septembey 1997

The knowledge of proton depth-dose curves, or “Bragg curves,” is a fundamental prerequisite for
dose calculations in radiotherapy planning, among other applications. In various cases it is desirable
to have an analytical representation of the Bragg curve, rather than using measured or numerically
calculated data. This work provides an analytical approximation of the Bragg curve in closed form.
The underlying model is valid for proton energies between about 10 and 200 MeV. Its main four
constituents areii) a power-law relationship describing the range-energy dependéncg;linear

model for the fluence reduction due to nonelastic nuclear interactions, assuming local deposition of
a fraction of the released enerdiii) a Gaussian approximation of the range straggling distribution;
and (iv) a representation of the energy spectrum of poly-energetic beams by a Gaussian with a
linear “tail.” Based on these assumptions the Bragg curve can be described in closed form using a
simple combination of Gaussians and parabolic cylinder functions. The resulting expression can be
fitted to measurements within the measurement error. Very good agreement is also found with
numerically calculated Bragg curves. €997 American Association of Physicists in Medicine.
[S0094-240827)00612-3
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[. INTRODUCTION that may be used to attain a fully analytical representation of
the proton pencil beam. The generality of such an analytical
The use of high-energy proton beams in radiotherapy is bemodel is particularly desirable in basic studies, e.g., in trying
coming a topic of increasing interest as more and more prog, getermine the principle physical merit of proton therapy as
ton the_rapy facilities are being installed. To fully exploit the compared to optimized intensity modulated photon thefapy,
potential advantages of proton or, more generally, heavy, iy estimating the potential advantage of new proton treat-
charged particle beams over conventional treatment modalh1ent techniques such as “distal edge trackifigMoreover,

ties, i_t is nhecessary to' perform thre?"?ime“Si‘?”?' treatmeny, analytical description of the Bragg curve may also be
planning and optimization. A prerequisite for this is an algo'useful in dose calculation algorithms used for routine treat-

rithm for accurate and fast dose calculation. In recent years a . s .
. ent planning, e.g., to guide inter- and extrapolation of mea-
number of such algorithms have been proposed, most Orp

: . 5 sured data.
which are of the pencil beam type: The paper is organized as follows: Section Il describes the
A pencil beam algorithm composes the three-dimensional pap 9 '

dose distribution of narrow “pencils,” whose weight is de- stepwise construction of the model for monoenergetic paral-

termined by the intensity and aperture of the beam. The peA(-EI beams, i.e., this section focuses on the machine-

cils are in most cases described as the product of a centrijdependent properties of the depth-dose. Section il con-
axis term, which is basically the depth-dose distributiont@inS @ simple development of the model to roughly account

(“Bragg curve”) of a broad beam,and an off-axis term for real polyene_rgetip bga_ms, which are characteristi_c for
describing the lateral dose distribution. The off-axis term istréatment machines in clinical use. Beam divergence is not
almost alwaysanalytically approximated by a Gaussian with considered here because in most cases it can be taken into
depth-dependent standard deviatiofihe central axis term, account by means of straightforward inverse square
i.e., the Bragg curve, on the other hand, is generally takegorrection® Section IV covers practical and computational
from measurements or from numerical calculations. Thisaspects. Section V presents the results in form of compari-
may be partly due to the fact that until now the problem ofsons of the model predictions with measurements and with
analytically modeling Bragg curves has been tackled in onlynumerical calculations performed at other institutions, and
a very few investigations. Some of the known approache$&ec. VI concludes the paper.
use purely mathematical curve fitting procedures)d are
therefore nc_>t much more generally applicable than the Med; THE MODEL FOR MONOENERGETIC BEAMS
sured data itself.

The objective of this work is to approximate the Bragg Consider an initially monoenergetic broad proton beam
curve with ananalytical model that has a physical basis and along thez axis, impinging on a homogeneous medium at
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z=0. The energy fluencel, at depthz in the medium can AOF T Tt
be written in the form: r ]
¥ ICRU 49 ]
V(z)=d(z)E(2), 1 3
(2)=2(2)E(2) @ w0k — Analyticat fit: Ry=0.0022+€,"" 3

where®(z) is the particle fluence, i.e., the number of pro-
tons per crA, andE(z) is the remaining energy at depth
The total energy released in the medium per unit nidss
“TERMA,” T, Ref. 10 at depthz is then:
1dv 1 dE(z) dd(z)
T(Z)——EE——E d(z F—’_T (2) |,

2
wherep is the mass density of the medium. The first term in
the brackets represents the reduction of energy of the protor
during their passage through matter. The “lost” energy is 7 L
mainly transferred to atomic electrons. The range of thes 0 50 100 150 200 250
secondary electrons is negligible for our purposes. This i E, [MeV]
due to the fact that only a relatively small energy is trans-
fer_red to each electron, which, in turn, is due to the Sma”FIG. 1. Range-energy relationship according to ICRU(R®@f. 16 and ana-
ratio of electron and proton magsf. Ref. 11. Therefore, the ytical fit with Eq. (4). The error bars represent a relative error of the ICRU
TERMA corresponding with the first term of EqR) pro-  data of+1.5%.
duces an absorbed dose, which is equal to the TERMA.

The second term of Eq2) describes the reduction of the
numberof protons. This loss of protons and the correspond

creases t@p~1.8*1°The factora is approximately propor-

, : absorbing medium,/As (“Bragg—Kleeman rule®?). It is
released energy is absorbed. Published methods for the COrs0 inversely proportional to the mass density of the me-
sideration of this effect in dose planning algorithms aregium.

largely heuristic and range from neglecting the en@rgy In the present work a new fit of Eq4) to the range-

assuming the local energy depositibithe approach used energy table published by ICREwas performed. The fitting
here is somewhere between these two extremes: it iS a§i,ces5 was driven by the constraint that for the most rel-
sumed that a certain fraction, of the energy released in the evant energies, i.e.,<0E,=<200 MeV, the maximum devia-
nonelastic nuclear interactions is absorbed locally, and thﬁon between approximatiof#) and the ICRU range should
rest is ignored. This approach follows the work of Bertfer, be less thant 1.5 mm. Using the inverse of E¢4) for R,
who gives reasons why it yields reasonable results in spite o£0.5 cm, and assuming, to be given in units of MeV and

its crudeness. Some investigations show that the valug of R, in cm, the best fit ofEo(Ry) to the ICRU data gave
should Eg slightly higher than one half for most energies and_; -~ anda~2.2x 102 for protons in watecf. Fig. 1).
depths.*“ For the sake of simplicity, in this paper=0.6 is Because of the statistical nature of the interaction of ra-

used throughout. . _ diation with matter, actual ranges are distributed about a
The total absorbed dosBy(2), is consequently given by mean range with an approximately Gaussian distribution.
. dE(2) dd(z) The above formula holds for the mean range. The “range
D(z)=— P (2, tr—g, E@/. (3)  straggling” effect will be considered later. For the moment
we will assume that all protons of the same initial energy
In order to determine this depth-dose curve, we only need t@ave exactly the same range.
know the functional relation&(z) and®(z). These are ob- The beam deposits energy along its path betwee®
tained from the known range-energy relationship and theindz=R, in the medium. The remaining energy¥z) at an
probability of nonelastic nuclear interactions, respectively. arbitrary deptte<R, must just suffice to travel the distance
Ro—z. Thus, according to the range-energy relationship:
Ro—z=aEP(2), or

A. Range-energy relationship

; ; o —0)— 1
The relationship petween thg mrqal enerﬁ?z—O)—E.O E(2)=—15 (Ro—2) P (5)
and the rangeg=R; in the medium is approximately given a
by This is the expression for the residual energy as a function of
Ro= aE}. (4)  the depth, which we were looking for. The linear stopping

: . . . ) power is now given by
With p=1.5, this relationship is known as Geiger's rtfe,

which is valid for protons with energies up to about 10 MeV. de 1 Yp-1

For energies between 10 and 250 MeV the expomeint- S(2)=- dz  pa™® (Ro=2)

0 (6)
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(Ro—2)"P "'+ (B+yBp)(Ry—2)*P
epa™(1+BRy)

for z<R,

0 for z>Rg

1.5 @y

D(2)= (11

which is of the form,

o

D(2)=D4(2)+Dy(2) =a;(Ro—2) "~ 1+ ay(Ry—2) P
(113

The fist term,D4(2), is the dose contribution from those
] protons that have no nuclear interactions. It is proportional to
—— Straight line fit: ®(z)e1+0.012+(R,—2)A the (nonnuclear stopping power and exhibits to some degree
1 the form of a Bragg curve, as it increases monotonically
: from z=0 to z=R, and has a peak &&,. However, due to
0.0 T b b the neglect of range straggling, the peak is unrealistically
0 10 20 30 40 sharp, and there is a singularity &t R,. The second term,
D,(2), represents the dose delivered by the relatively small
fraction of protons that have nuclear interactions.dé-
Fic. 2. Fluence reduction according to Janni's ddaf. 12 using Eq.(7), ~ creasesmonotonically and is zero at= R, (cf. Fig. 3. Note
and |_ts strglght line fit. The error bars are also based on Janni’'s data, Wlﬂh ~ . .
consideration of error propagation. that D,(z) comprises the dose resulting not only from
nuclear but also from nonnuclear interactions that take place
before the nuclear collision.
Expression(11) givesD in units of MeV/g, if ¢ is given
in g/cnt. To obtainD in Gy, one needs to multiply with the
For energies above about 20 MeV there is nonnegligibldactor 10e/C=1.602<10 1% where e is the elementary
probability that protons may be lost from the beam due tacharge.
nuclear interactions. The probabilitl, for such nonelastic
nuclear interactions as a function of the residual ramfg,
-z, has been tabulated by JarfiLee et al? have derived D. Depth-dose with range straggling
the proportionality

® [rel. units]

{( Janni's data -

g
o
——

B. Fluence reduction

Let us first consider only those protons that have no
nuclear interactions, referring ©,(z) of Eq. (11). For sta-
d(z)= T-P(R—2)" (7)  tistical reasons we should expect that the distribution of the
0 range of individual protons that have lost all their enekgy
These data are plotted in Fig. 2. The reduction of the fluencéh the matter is Gaussidn.This is in fact a good approxi-
from z=0 to z=R, can be roughly approximated by a mation, although the real distribution is slightly asymmetric
straight line? because of multiplelastic scattering, Wgch can make the
_ (projected range smaller but never larger.
®(2)* 1+ B(Ro~2), ® Similarly, the distribution of the(projected depth at
which is also plotted in Fig. ZA slightly better approxima- which the protons have lost the p&§— E of their energy is
tion results from the use of another power-law relationshipapproximately a Gaussian distribution about the mean depth
particularly: ®(z)=1+0.018R,—2)°®". Nevertheless, the z(E,Ey) with standard deviationr,(z). Thus there is an
straight line fit will be used due to its simpliciyThe slope uncertainty in the depth at which the protons have a residual
parameter,8, was determined to bg~0.012cm?®. For energy ofE, which can be considered as depth straggling.
practical reasons it is more useful to normalize the fluence t®n the other hand, the residual enetgyleterminesxactly

the primary fluenced,, which yields the stopping power, hend®;. Therefore the dose delivered
1+ B(Ry—2) right afterAthe_protons have lost the enerfgy— E may be
D(2)=D, ﬁ, 9 written asD(z(E,Eg)). The doseD(z) at theactual depth
BRo z is then obtained by folding the Gaussian depth straggling
The fluence reduction at depthis then into D, by means of

. e (%2052

R Ro~ ___
(10) Dl(z):<D1)(Z)=fo Di(2) W

The calculation oD,(2), i.e., the consideration of strag-
gling for the fraction of protons that have nuclear interac-

The depth-dose distribution can now be calculated simplyions, is less straightforward but also less critical, because
by inserting Eqs(5), (6), (9), (10), into Eq.(3). This yields  these protons contribute a smaller and smoother amount to

dd B

dz CI)O l+—ﬂR0 dz (12)

C. Depth dose without range straggling
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the total dose. At this point we will assume that straggling 40 T T
can be folded intd, in exactly the same way as above, i.e., C
that we can simply replacB; by D, in Eq. (12) to obtain
D,(2).

Since the protons accumulate depth straggling along thei
path (cf. Appendix B, o,(z) is strongly depth dependent,
starting with 0,(0)=0 and reaching a maximum of:
=0,(Ry). Nevertheless, it was found that the integral in Eq.
(12) can be approximated with very high accuracy by assum-
ing a constant value ofr,(zZ)=oc. This can be understood
because at those depths whertg£z) is significantly smaller
than o, bothD; andD, are smooth, such that the effect of
folding in a Gaussian is negligiblef. Fig. 3.

Consequently, we can write (z)=D(z) + D,(z) as the
convolution integral

Dose per fluence [Gycm™1.602:107"]

1

N2mo
. - . Fic. 3. Bragg curves with and without consideration of straggling for 150
In Appendlx B it is shown that the convolution of the terms MeV protons in water. The dotted line at the bottom is the dose contribution

(Ro—2)"" ! of Eq. (11) with the Gaussian yields from the fraction of protons that have nuclear interactions, De(z) or
D,(2) (these are indistinguishable within the resolution of the figure

D(2)=(B)(2)-—— [ B@e Pz a3

1
(RO_ Z)V*J.H - e*(Ro*Z)2/40'20.V1"( V)

270
R.—7 ship (4) we find Ry=15.64 cm, and with Eq(18) we obtain
x@_v( -0 ) (19 0=0.16 cm. The resulting Bragg curves with and without
g

consideration of straggling as calculated with Etp) and
whereI'(x) is the gamma function and,(x) is the para- (11), respectively, are shown in Fig. 3.
bolic cylinder function:®!°Inserting this result into Eq11)
yields
) IIl. CONSIDERATION OF THE ENERGY SPECTRUM
e ¢ hgPT (1/p)
D(z)=®d,

T So far it has been assumed that the proton beam is ini-
V2mepa'P(1+BRy) tially mono-energetic. Unfortunately, this assumption does
not correspond with reality. Real beams have an initial spec-
51/_1,p_1(—§)} tral energy distribution, which depends on the individual
characteristics of the accelerator, the beam guide, and the
(15  collimation system. The energy spectrdbg(E)AE, which
with is the number of protons per émwith energies betweeR
andE+AE, can be quite different from the ide@shape.
~Ro—z An obvious way to consider the energy spectrum is to per-
{= . (16) ’ : " ) :

o orm a weighted superposition of mono-energetic Bragg
curves with weightsbg. In general, there is no analytical
solution to this problem, so that numerical methods have to
be used. In this work we will use an approximation, which
allows for an analytical solution of the form of E¢L5).

Typical energy spectra consist of two parts: A peak,
' 17) which can be approximated by a Gaussian energy spectrum
aroundE=E,, and a relatively small “tail” extending to-
ward low energies. Letrg o be the standard deviation of the
Gaussian. Sincergg is generally small ¢gqo<E), the
range-energy relationship of E@t) can be linearized around
0'%0_012?8'935, (18) E=E,. Hence, the Gaussian energy spectrum translates into
a Gaussian range spectrum, whose variance adds tefthe

X

a0+ B+
o~ b p Y

The value ofo=opono fOr an initially mono-energetic
beam depends oR, (or Ep). The functional relation can be
approximated by

3 2
2 P a®

o~ a 3p-2
where o' is a factor that, asy, depends on the stopping

matter (Appendix B. For water we find «’=0.087
MeV?/cm, and consequently

Rg* 2lp

whereRO ando are in c_:m(cf. Ref..20. This means thatr is of the mono-energetic beam:
approximately proportional tB, with a value roughly 1% of )
Ro- d?=02  + o2 d;RO =0
As an example we will consider a mono-energetic 150 mono ™ PE0 | g,

MeV proton beam in water. From the range-energy relation- (19

2 2 2 2r-2p-2
monot TE,02°P = .
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TasLE |. Summary of constants and parameters used in the theoretical model. The values are for protons in
water. The last two parameters are machine specific. The valmear be calculated fromr ., andog o using

Eq. (19).
Description Value Unit
p Exponent of range-energy relation 1.77 1
a Proportionality factor 0.0022 cm MeV
Ro Range aEj cm
B Slope parameter of fluence reduction 0.012 cmt
relation
y Fraction of locally absorbed energy re- 0.6 1
leased in nonelastic nuclear interactions
Tmono Width of Gaussian range straggling 0.01R3%% cm
OEo Width of Gaussian energy spectrum ~0.01E, MeV
€ Fraction of primary fluence contribut- ~0.0-0.2 1

ing to the “tail” of the energy spectrum

Consequently, the Gaussian energy spectrum can be consithis means that the range spectrum resulting from the linear
ered simply by increasing the in Eq. (15 as compared to energy spectrum is approximately constanp(21<1). In

its value from Eq(17). (Note that in the previous section we fact, with the approximatiop~2 we obtain:

basically dealt with Gaussiatlepth spectra, while here we

have to account for a Gaussiaange spectrum. However, _ 1

since the depth-dose depends primarily on the distance be- Pr(R)~const=edq Ry’ (22
tween range and depth, this conceptual difference has no

practical significance. The range spectrum must be convolved with the individual

The consideration of the tail of the energy spectrum isdepth-dose distribution as a function of the range to obtain
somewhat more difficult because it may depend on manyhe total depth-dose distributioB,; , resulting from the tail
different factors, and its exact shape is not generally knownof the energy spectrum. Again, we can make simplifications,
Fortunately, we can utilize the fact that the total fluence corwhich can be justified due to the relatively small valuesof
responding with the tail is only a relatively small fractiany,  First, we will go back to the case where range straggling was
of the fluenced, in the peak. For this reason, we can useignored. Here the dose delivered by protons that have
rather coarse models to approximate the spectrum of the taiuclear interactions will be disregarded, i.e., it will be as-
A very simple model that agrees at least with the expectatiosumed thaD(z) =D,(2) [cf. Egs.(11), (118]. Now we can
that®¢(E) should be negligible & =0 and have a positive write D, as a function oz andR (instead ofR,) and per-
slope for smallE is a linear ramp:®g(E)><E for O<E form the convolution as follows:
<E,. Normalizing the integral ofb(E) to e®, yields

R 1 (R R
Deai(2)~ f "De(R)Dy(z2,R)AR (23
2E D, J,;
De(E)= e - (20)
0
E(I)O Ro
. : I ~ R—2)"P"1dR 24
To avoid a discontinuity of the energy spectrumiat E,, Roepa®(1+ BRy) L (R=2) 24
the sharp edge of the ramp should be “smeared.” This will
be done implicitly by means of the incorporation of strag- edb, p
gling later on. It should be noted that the average tail-to-peak ~Rooa™(1+ BRy) (Ro—2)™". (25
ratio of the energy spectrum 'I\<§2770'E106/E0, which is in
the order of only 2%-3% ok. Note that this expression is of the same form as the second

To calculate the depth-dose distribution reSUlting from tthrm, E)Z(Z)! of Eq (]_l) Stragghng can now be considered
linear energy spectrum, it is necessary to transtet€E)  in the same way as in the previous section, which results in

into a range spectrunPg(R), where®g(R)AR is the flu-  the final expressiom,,;(z). Adding this expression to the
ence of protons with ranges betweRrandR+AR. Thisis  D(z) of Eq. (15) gives

accomplished by means of the relationbg(R)

=®(E(R))dE/dR. Using the range-energy relationship of e‘§2’4ol’pl“(1/p) 1
Eq. (4) gives D(z)=9 — D _qp(—
q ( )g ( ) 0 \/ngallp(l-i—,BRo) P 1/p( g)
2R?P1 B €
Dr(R)=€D EZpa (21 + B+7,3+ Ro @1/;)1(—{)} (26)
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IV. COMPUTATIONAL METHODS TasLE |l. Parameters for the fit of Eq29) to measured data published in

the literature.

At first glance Eq.(26) looks rather complicated. How-

ever, its length is mainly due to the many constants involved. Ro - . Max. Deviation
Table | summarizes the constants and parameters for conve- Source [em] [cm] [%]  [%] [cm]
nience. L (Ref. 22 234 029 2 23 +0.14
“ 1 . . . . arsson(rer. . . — 2. .
The “heart” of Eq. (26) is the parabolic cylinder function 2 = (Ref.23 158 027 5 —-25 —010

2,(x). This function is tabulatetf Public domain computer
programs for the calculation a¥,(x) are available. Fof
>20 numerical problems may occur becausg) becomes
very large. However, forg>10 (i.e., z<Ry—100), D(2)
agrees withD(z) to within 0.5% (cf. Fig. 3. Furthermore,
for {<—5 (i.e.,z>Ry+50), D(2) is negligible. Therefore,
we can approximat®(z) by

tor. However, for various reasons the nominal energy did not
agree very well witte, of the beam. Therefore it was chosen

to useR, as a fit parameter. In most cases the Bragg curves
were normalized to a maximum of 1.0 because no absolute

15(2) for z<Ry—100 dose values were available. The fit was performed by means
D(z)~{ D(z) for Ry—10o<z<Ry+50 (27) of trial and error. The development of an automatic fit pro-
0 otherwise. cedure should be relatively easy. However, the pressure to

) ) o develop such an algorithm was not very high because in
Alternatively, we can directly compute expk7/4)%,(X),  general very few(about five iterations sufficed to achieve
which is well-behaved for arbitraryrea) x values, andy oo results. For the comparisons with the numerical data all
values relevant to this study. PORTRAN computer program  parameters were directly taken from Table I, without any
for this calculation is available from the author on request. fitting.

The gamma function, which is required in EQ6), is Incidentally, a general and elegant check of the depth-
tabulated and be computed within many commercially availyygse distribution is based on the rule tRatequals the depth
able mathematical computer programs. Forghealue from Zgo at which the dose has dropped to 80% of its maximum

Table I we find:I'(1/p) = 1.575. The depth-dose distribution |5, beyond the Bragg pe&kThe analytical model of this

in water is therefore determined by work confirms this rule. In fact, if nuclear interactions and
. d, the effect of the energy tail are disregarded near the Bragg
Dho(d= 170 01R, [17.93Ry—2) 9% peak, the relatiorzgy=R, can be derived from Eq(26).
' 0 Under these assumptions the relation is strictly valid for all
+(0.444+ 31.7e/Ry) (Ro— 2) 2589 (28) Ry, 0, anda.
and A. Comparisons with measured data
e~ (Ro=2)%/40 0.565 As a first step, the model was compared with measured
Dho(2=Po — 7501w data published in the literature. In particular, the data pub-
' 0 lished in Fig. 5 of Larssdf for the synchrocyclotron at Upp-

X

Ro—2 sala and in Fig. 2 of Koehleet al for the Harvard cyclo-

) tron laboratory(HCL) were considered. The corresponding
values of the parameters and the maximum deviations are
presented in Table Il. The deviations are given in % for the
plateau region and in cm for the peak region. As can be seen

(29) from this table, the agreement is very good. Deviations are in
the order of magnitude of reading the data off the figures.

V. COMPARISONS WITH MEASURED AND Second, the analytical model was compared with mea-

NUMERICALLY CALCULATED DATA sured data, WhICh was kindly provided by several prpton
centers. As a first example measured data from the radiosur-

To investigate the quality of the analytical approximationgery beam line of the HCL was considered. The measure-
(26) or (29), comparisons were made with measured andnents were performed with a Markus parallel plate chamber
numerically calculated depth-dose data. Since the energy a water tank. The beam was collimated to 4.8 cm diam-
spectra of the beams were not generally known, the paraneter, representing a broad beam. The nominal energy was
eterso, € andR, were varied to achieve an optimum fit to 158.6 MeV, but there was some energy loss in the scattering
the measured datélt should be noted that measured depth-systems and in the tank wall, resulting in a ranBg, of
dose curves depend to some degree on the dosifteé@are- only 13.5 cm. The beam divergence effect was removed
ful dosimetry is essential if one wishes to determine the pafrom the measurements by means of inverse square division.
rameterso and e that are characteristic of the beam, and notFigure 4 shows the data and their analytical fit. A relatively
of the technique of measurementhe value ofR, could high value ofe (20%) had to be used to achieve a good fit in
also be determined from the range-energy relationgfijp this example. However, there is a considerable amount of
using the known nomindkxtraction energy of the accelera- uncertainty in this value because the effect resulting from the

11.26;1,Z0_565( -

) Ro—z
+(0.157+11.26/Ry) Z_ 1 568 — .
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HCL data TRIUMF data, no nozzle

T T L L N e T M T T T T T T T T T
1.or 158.6 MeV ] O 70 Mev 116 MeV ]
Re=13.5cm Re=3.2cm R,=8.8cm -
F 0=0.27cm F 0=0.06cm 0=0.13¢c ]
0.8y €=20% 0.8  e=4% €=0% 7

50.6 - 50.6
€ L J 1S L

D/D
D/D

0 2 4 6 8 10
z [em]
(a)
Fic. 4. Depth-dose measurements in wateig dot9 for the HCL beam.
The solid line represents the analytical fit usgzo(z) of Eq. (29). TRIUMF data, with nozzle
10 LA AL A AL A B A B 7
. . L 70 MeVv 116 MeV
tail of the energy spectrum and the divergence effect cannc
be fully separategboth result in an increased entrance dpse -
and because the degree of divergence was not exact 0.8 )
known.
As a second example a dataset from TRIUWIRI Uni- < 0.6L ]
versity Meson Facility, Vancouver, Canada was considered. QE Tt
The dataset consisted of measurements with and without tr -

proton nozzle in the beam path, and for two nominal ener 0.4
gies, 70 MeV and 116 MeV, each. No collimators were in- i
serted, such that the data represents a broad beam. The m I
surements were carefully performed with an optical diode 0.2
(type BPW34 in a water phantom?* Again, the beam di- I
vergence effect was removed from the measurements k ool . . 1 o n
means of inverse square division before comparison with th 0 5 4 6 8 10
analytical model. Figure 5 shows the very good fit obtained z [em]

Deviations are within the measurement error, which is ap (b)

proximately given by the size of the symbols. Obviously, the

nozzle causes some additional low-energy contamination of

the beam, thus requiring a higher valueedr the fit. Fic. 5. Depth-dose measurements in wassmbols for the TRIUMF beam
’ with (a) and without(b) nozzle in the beam path. The estimated measure-

ment error is roughly given by the size of the symbols. The solid lines
represent the analytical fit usirtgHzo(z) of Eq. (29).

B. Comparisons with numerically calculated data

As a further test of the model, comparisons were made
with numerically calculated Bragg curves, which were taken(18) alone, asogo should be zero for a mono-energetic
from dose calculation algorithms developed at TRIUMF inbeam. For the same reasarnwas set to zero. The compari-
collaboration with DKFZ and at PSI(Paul Scherrer Insti- son shows that the analytical model predicts a 5% higher
tute), Villigen, Switzerland® Both algorithms were verified peak dose than the TRIUMF algorithm, while the entrance
through measurements and Monte Carlo calculations. In thidose is somewhat smaller. The reasons for this discrepacy
case no normalization had to be done because the numeriazdn be manifold and are not yet completely understood.
results were given in absolute terms. However, it should be noted that by slightly increasing the

Figure 8a) shows the comparisons for a mono-energeticvalue of o to 0.23 cm, and setting=6%, an excellent fit
175 MeV Bragg curve from the TRIUMF algorithm can be achieved. This could not be demonstrated in Faj. 6
(dashes The solid line results from applying ER9) with because the curve was indistinguishable from the dashed
all parameters calculated using the methods presented in thiRIUMF curve.
work. Particularly,o was determined to be 0.2 cm from Eq.  The PSI examples shown in Fig(l$ (dashesare calcu-
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TRIUMF numerical data includes a nonlocal model for the consideration of the dose
10 L L L I produced by nonelastic nuclear interactions, which causes an
I TRIUMF numerical dato ] increased dose at medium depths.
250 . .
: analytical model 1 VI. DISCUSSION AND CONCLUSIONS
20F . It has been shown that the depth-dose curve of a broad

175 MeV ] proton beam perpendicularly incidenting on a homogeneous
medium can be represented analytically through terms given
by the product of a Gaussian and a parabolic cylinder func-
tion. In a way this can be seen as a “natural” representation
of the proton Bragg curve, just like the depth-dose curve of a
] proton beam can be described by means of exponentials.
3 This analytical expression for the Bragg curve is derived
] from several phenomenological approximations of the inter-
. action principles of protons with matter, and it is based on a
25 coarse model of the primary energy spectrum of typical
beams. The validity of these approximations is proved by the
fact that the model can easily be fitted to measured data
within the error of measurement. Very good agreement has
also been found without parameter fitting between the model

Dose per fluence [Gycm*1.602:107"]

VY
o
—

PS| numerical data predictions and numerical depth-dose data calculated at other

o v ] institutions. The model is valid for clinically relevant ener-
LT PSI numerical dato ] gies up to about 200 MeV. In most cases that have been
o5 analyt. modelf} . studied a systematic deviation at depths around 3/4 of the

o

maximum range has been found, where the model predic-
tions are consistently slightly too low. This might be attrib-
uted to the coarse approximation of the energy spectrum.
] However, a more likely explanation is the oversimplified
7 model for the dose deposition resulting from nuclear interac-
] tions. Here some further development might be worthwhile,
3 though the deviations are very small, with less than 3% rela-
] tive deviation.

Potential applications of the closed form representation of
the Bragg curve are primarily seen in theoretical studies re-
garding radiotherapy planning and optimization. Further-
more, the model may also be useful in clinical treatment
25 planning programs. One point of practical concern is the cal-

culation speed. “Brute force” calculations of the product of
the Gaussian with the parabolic cylinder function are rela-
tively slow. However, there is some potential for improve-
Fic. 6. Comparison of numerically calculated Bragg cur¢es) with the ~ ments. For example, it seems possible to resolve this product
analytical mode(—) of this work, Eq.(29), using the parameters of Table into cubic splines, which allows for a very rapid calculation
I4)W|th0ut fitting. (a): data from TRIUMF(Ref. 5; (b): data from PSKRef. (E. de Kock, NAC, private communicatian
' It is evident that the knowledge of the Bragg curve alone
is not sufficient for any practical application. However,

.. _methods for the consideration of other relevant effects, of
lated Bragg curves for 138 MeV and 177 MeV beams with Avhich the most important ones are the lateral widening of the

ialsssgaznnfge:]gg s;p;ﬁctrttjm.rr]F;zm\;[hle kno]\c/v\r;v vraludest (:f thSeam at depth due to multiple coulomb scattering, and the
omentum band of the beam, the valuesrgl, were dete influence of inhomogeneities, are well known. The lateral

mined to be 1.32 MeV and 1.52 MeV, respectively. All otherdose fall-off can be modeled simply and accurately using

f:;a?r?te;;’;’G‘;irsaﬁ'fjercef(;oorﬁ dﬁ;k()elgiﬁvgvsv S(e)tofjoazioér::; Gaussian kernefsThe simplest form of an inhomogeneity
9 y g g correction method, which still is sufficiently accurate in most

with the PSI curves. In the 138 MeV data there is an appatr- . .
ent shift corresponding with an error Ry of 1 mm. Other cases, is a pathlength scaling approach.

parameters such as the entrance dose and the width and

height of the Bragg peak agree very well. In the 177 MeVACKNOWLEDGMENTS

example there is a minor deviation at medium depths. The | would like to thank Dr. K.-U. Gardey, Dr. A. Lomax,
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Dose per fluence [Gycm?*1.602:107"]
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ing their measured and numerically calculated Bragg curvesie can now calculate:
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APPENDIX A: MATHEMATICAL CONSIDERATION °
OF RANGE STRAGGLING 2 2
We wish to convolve terms of the fornRf—z)”~* from —a e REP, (B5)
3-2p °

the numerator of Eq.11) with the Gaussian depth straggling

distribution, i.e., we calculate 3Electronic-mail: t.bortfeld@dkfz-heidelberg.de
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