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The knowledge of proton depth-dose curves, or ‘‘Bragg curves,’’ is a fundamental prerequisite for
dose calculations in radiotherapy planning, among other applications. In various cases it is desirable
to have an analytical representation of the Bragg curve, rather than using measured or numerically
calculated data. This work provides an analytical approximation of the Bragg curve in closed form.
The underlying model is valid for proton energies between about 10 and 200 MeV. Its main four
constituents are:~i! a power-law relationship describing the range-energy dependency;~ii ! a linear
model for the fluence reduction due to nonelastic nuclear interactions, assuming local deposition of
a fraction of the released energy;~iii ! a Gaussian approximation of the range straggling distribution;
and ~iv! a representation of the energy spectrum of poly-energetic beams by a Gaussian with a
linear ‘‘tail.’’ Based on these assumptions the Bragg curve can be described in closed form using a
simple combination of Gaussians and parabolic cylinder functions. The resulting expression can be
fitted to measurements within the measurement error. Very good agreement is also found with
numerically calculated Bragg curves. ©1997 American Association of Physicists in Medicine.
@S0094-2405~97!00612-3#
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I. INTRODUCTION

The use of high-energy proton beams in radiotherapy is
coming a topic of increasing interest as more and more p
ton therapy facilities are being installed. To fully exploit th
potential advantages of proton or, more generally, he
charged particle beams over conventional treatment mod
ties, it is necessary to perform three-dimensional treatm
planning and optimization. A prerequisite for this is an alg
rithm for accurate and fast dose calculation. In recent yea
number of such algorithms have been proposed, mos
which are of the pencil beam type.1–5

A pencil beam algorithm composes the three-dimensio
dose distribution of narrow ‘‘pencils,’’ whose weight is de
termined by the intensity and aperture of the beam. The p
cils are in most cases described as the product of a ce
axis term, which is basically the depth-dose distributi
~‘‘Bragg curve’’! of a broad beam,1 and an off-axis term
describing the lateral dose distribution. The off-axis term
almost alwaysanalyticallyapproximated by a Gaussian wit
depth-dependent standard deviation.6 The central axis term
i.e., the Bragg curve, on the other hand, is generally ta
from measurements or from numerical calculations. T
may be partly due to the fact that until now the problem
analytically modeling Bragg curves has been tackled in o
a very few investigations. Some of the known approac
use purely mathematical curve fitting procedures,7 and are
therefore not much more generally applicable than the m
sured data itself.

The objective of this work is to approximate the Bra
curve with ananalytical model that has a physical basis a
2024 Med. Phys. 24 „12…, December 1997 0094-2405/97/24 „
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that may be used to attain a fully analytical representation
the proton pencil beam. The generality of such an analyt
model is particularly desirable in basic studies, e.g., in try
to determine the principle physical merit of proton therapy
compared to optimized intensity modulated photon therap8

or in estimating the potential advantage of new proton tre
ment techniques such as ‘‘distal edge tracking.’’9 Moreover,
an analytical description of the Bragg curve may also
useful in dose calculation algorithms used for routine tre
ment planning, e.g., to guide inter- and extrapolation of m
sured data.

The paper is organized as follows: Section II describes
stepwise construction of the model for monoenergetic pa
lel beams, i.e., this section focuses on the machi
independent properties of the depth-dose. Section III c
tains a simple development of the model to roughly acco
for real polyenergetic beams, which are characteristic
treatment machines in clinical use. Beam divergence is
considered here because in most cases it can be taken
account by means of straightforward inverse squ
correction.1 Section IV covers practical and computation
aspects. Section V presents the results in form of comp
sons of the model predictions with measurements and w
numerical calculations performed at other institutions, a
Sec. VI concludes the paper.

II. THE MODEL FOR MONOENERGETIC BEAMS

Consider an initially monoenergetic broad proton be
along thez axis, impinging on a homogeneous medium
202412…/2024/10/$10.00 © 1997 Am. Assoc. Phys. Med.



o-

in
to
is

es

ns
a

e
nd
le
e
c
re

a
e
th
,
e
of
an

d

th
.

n

,
V

the

e-

rel-

ra-
t a
on.
ge
nt
gy

e
ip:

of
g

U

2025 Thomas Bortfeld: Approximation of Bragg curve for therapeutic proton beams 2025
z50. The energy fluence,C, at depthz in the medium can
be written in the form:

C~z!5F~z!E~z!, ~1!

whereF(z) is the particle fluence, i.e., the number of pr
tons per cm2, andE(z) is the remaining energy at depthz.
The total energy released in the medium per unit mass~the
‘‘TERMA,’’ T, Ref. 10! at depthz is then:

T~z!52
1

%

dC

dz
52

1

% S F~z!
dE~z!

dz
1

dF~z!

dz
E~z! D ,

~2!

where% is the mass density of the medium. The first term
the brackets represents the reduction of energy of the pro
during their passage through matter. The ‘‘lost’’ energy
mainly transferred to atomic electrons. The range of th
secondary electrons is negligible for our purposes. This
due to the fact that only a relatively small energy is tra
ferred to each electron, which, in turn, is due to the sm
ratio of electron and proton mass~cf. Ref. 11!. Therefore, the
TERMA corresponding with the first term of Eq.~2! pro-
duces an absorbed dose, which is equal to the TERMA.

The second term of Eq.~2! describes the reduction of th
numberof protons. This loss of protons and the correspo
ing release of energy can be attributed to nonelastic nuc
interactions.12 Here it is not so clear, where and how th
released energy is absorbed. Published methods for the
sideration of this effect in dose planning algorithms a
largely heuristic and range from neglecting the energy2 to
assuming the local energy deposition.5 The approach used
here is somewhere between these two extremes: it is
sumed that a certain fraction,g, of the energy released in th
nonelastic nuclear interactions is absorbed locally, and
rest is ignored. This approach follows the work of Berger13

who gives reasons why it yields reasonable results in spit
its crudeness. Some investigations show that the valueg
should be slightly higher than one half for most energies
depths.13,4 For the sake of simplicity, in this paperg50.6 is
used throughout.

The total absorbed dose,D̂(z), is consequently given by

D̂~z!52
1

% S F~z!
dE~z!

dz
1g

dF~z!

dz
E~z! D . ~3!

In order to determine this depth-dose curve, we only nee
know the functional relationsE(z) andF(z). These are ob-
tained from the known range-energy relationship and
probability of nonelastic nuclear interactions, respectively

A. Range-energy relationship

The relationship between the initial energyE(z50)5E0

and the rangez5R0 in the medium is approximately give
by

R05aE0
p . ~4!

With p51.5, this relationship is known as Geiger’s rule14

which is valid for protons with energies up to about 10 Me
For energies between 10 and 250 MeV the exponentp in-
Medical Physics, Vol. 24, No. 12, December 1997
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creases top'1.8.14,15 The factora is approximately propor-
tional to the square root of the effective atomic mass of
absorbing medium,AAeff ~‘‘Bragg–Kleeman rule’’14!. It is
also inversely proportional to the mass density of the m
dium.

In the present work a new fit of Eq.~4! to the range-
energy table published by ICRU16 was performed. The fitting
process was driven by the constraint that for the most
evant energies, i.e., 0<E0<200 MeV, the maximum devia-
tion between approximation~4! and the ICRU range should
be less than61.5 mm. Using the inverse of Eq.~4! for R0

<0.5 cm, and assumingE0 to be given in units of MeV and
R0 in cm, the best fit ofE0(R0) to the ICRU data gavep
'1.77 anda'2.231023 for protons in water~cf. Fig. 1!.

Because of the statistical nature of the interaction of
diation with matter, actual ranges are distributed abou
mean range with an approximately Gaussian distributi
The above formula holds for the mean range. The ‘‘ran
straggling’’ effect will be considered later. For the mome
we will assume that all protons of the same initial ener
have exactly the same range.

The beam deposits energy along its path betweenz50
andz5R0 in the medium. The remaining energyE(z) at an
arbitrary depthz<R0 must just suffice to travel the distanc
R02z. Thus, according to the range-energy relationsh
R02z5aEp(z), or

E~z!5
1

a1/p ~R02z!1/p. ~5!

This is the expression for the residual energy as a function
the depth, which we were looking for. The linear stoppin
power is now given by

S~z!52
dE

dz
5

1

pa1/p ~R02z!1/p21. ~6!

FIG. 1. Range-energy relationship according to ICRU 49~Ref. 16! and ana-
lytical fit with Eq. ~4!. The error bars represent a relative error of the ICR
data of61.5%.
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B. Fluence reduction

For energies above about 20 MeV there is nonneglig
probability that protons may be lost from the beam due
nuclear interactions. The probability,P, for such nonelastic
nuclear interactions as a function of the residual range,R0

2z, has been tabulated by Janni.12 Lee et al.2 have derived
the proportionality

F~z!}
1

12P~R02z!
. ~7!

These data are plotted in Fig. 2. The reduction of the flue
from z50 to z5R0 can be roughly approximated by
straight line:2

F~z!}11b~R02z!, ~8!

which is also plotted in Fig. 2.@A slightly better approxima-
tion results from the use of another power-law relationsh
particularly: F(z)}110.018(R02z)0.87. Nevertheless, the
straight line fit will be used due to its simplicity.# The slope
parameter,b, was determined to beb'0.012 cm21. For
practical reasons it is more useful to normalize the fluenc
the primary fluence,F0 , which yields

F~z!5F0

11b~R02z!

11bR0
. ~9!

The fluence reduction at depthz is then

2
dF

dz
5F0

b

11bR0
. ~10!

C. Depth dose without range straggling

The depth-dose distribution can now be calculated sim
by inserting Eqs.~5!, ~6!, ~9!, ~10!, into Eq. ~3!. This yields

FIG. 2. Fluence reduction according to Janni’s data~Ref. 12! using Eq.~7!,
and its straight line fit. The error bars are also based on Janni’s data,
consideration of error propagation.
Medical Physics, Vol. 24, No. 12, December 1997
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D̂~z!5H F0

~R02z!1/p211~b1gbp!~R02z!1/p

%pa1/p~11bR0!

for z,R0

0 for z.R0

~11!

which is of the form,

D̂~z!5D̂1~z!1D̂2~z!5a1~R02z!1/p211a2~R02z!1/p.
~11a!

The fist term,D̂1(z), is the dose contribution from thos
protons that have no nuclear interactions. It is proportiona
the ~nonnuclear! stopping power and exhibits to some degr
the form of a Bragg curve, as it increases monotonica
from z50 to z5R0 and has a peak atR0 . However, due to
the neglect of range straggling, the peak is unrealistica
sharp, and there is a singularity atz5R0 . The second term
D̂2(z), represents the dose delivered by the relatively sm
fraction of protons that have nuclear interactions. Itde-
creasesmonotonically and is zero atz5R0 ~cf. Fig. 3!. Note
that D̂2(z) comprises the dose resulting not only fro
nuclear but also from nonnuclear interactions that take pl
before the nuclear collision.

Expression~11! givesD̂ in units of MeV/g, if % is given
in g/cm3. To obtainD̂ in Gy, one needs to multiply with the
factor 109e/C51.602310210, where e is the elementary
charge.

D. Depth-dose with range straggling

Let us first consider only those protons that have
nuclear interactions, referring toD̂1(z) of Eq. ~11!. For sta-
tistical reasons we should expect that the distribution of
range of individual protons that have lost all their energyE0

in the matter is Gaussian.11 This is in fact a good approxi-
mation, although the real distribution is slightly asymmet
because of multipleelastic scattering, which can make th
~projected! range smaller but never larger.17

Similarly, the distribution of the~projected! depth at
which the protons have lost the partE02E of their energy is
approximately a Gaussian distribution about the mean de
z̄(E,E0) with standard deviationsz( z̄). Thus there is an
uncertainty in the depth at which the protons have a resid
energy ofE, which can be considered as depth straggli
On the other hand, the residual energyE determinesexactly
the stopping power, henceD̂1 . Therefore the dose delivere
right after the protons have lost the energyE02E may be
written asD̂1( z̄(E,E0)). The doseD1(z) at theactualdepth
z is then obtained by folding the Gaussian depth stragg
into D̂1 by means of

D1~z!5^D̂1&~z!5E
0

R0
D̂1~ z̄!

e2~z2 z̄ !2/2sz
2
~ z̄ !

A2psz~ z̄!
dz̄. ~12!

The calculation ofD2(z), i.e., the consideration of strag
gling for the fraction of protons that have nuclear intera
tions, is less straightforward but also less critical, beca
these protons contribute a smaller and smoother amoun

ith
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the total dose. At this point we will assume that straggli
can be folded intoD̂2 in exactly the same way as above, i.
that we can simply replaceD̂1 by D̂2 in Eq. ~12! to obtain
D2(z).

Since the protons accumulate depth straggling along t
path ~cf. Appendix B!, sz( z̄) is strongly depth dependen
starting with sz(0)50 and reaching a maximum ofs:
5sz(R0). Nevertheless, it was found that the integral in E
~12! can be approximated with very high accuracy by assu
ing a constant value ofsz( z̄)[s. This can be understoo
because at those depths wheresz( z̄) is significantly smaller
thans, both D̂1 and D̂2 are smooth, such that the effect
folding in a Gaussian is negligible~cf. Fig. 3!.

Consequently, we can writeD(z)5D1(z)1D2(z) as the
convolution integral

D~z!5^D̂&~z!5
1

A2ps
E

2`

R0
D̂~ z̄!e2~z2 z̄ !2/2s2

dz̄. ~13!

In Appendix B it is shown that the convolution of the term
(R02z)n21 of Eq. ~11! with the Gaussian yields

~R02z!n21°
1

A2ps
e2~R02z!2/4s2

snG~n!

3D2nS 2
R02z

s D , ~14!

whereG(x) is the gamma function andDy(x) is the para-
bolic cylinder function.18,19 Inserting this result into Eq.~11!
yields

D~z!5F0

e2z2/4s1/pG~1/p!

A2p%pa1/p~11bR0!

3F 1

s
D21/p~2z!1S b

p
1gb D D21/p21~2z!G

~15!

with

z5
R02z

s
. ~16!

The value ofs5smono for an initially mono-energetic
beam depends onR0 ~or E0!. The functional relation can be
approximated by

s2'a8
p3a2/p

3p22
R0

322/p , ~17!

where a8 is a factor that, asa, depends on the stoppin
matter ~Appendix B!. For water we find a850.087
MeV2/cm, and consequently

s'0.012R0
0.935, ~18!

whereR0 ands are in cm~cf. Ref. 20!. This means thats is
approximately proportional toR0 with a value roughly 1% of
R0 .

As an example we will consider a mono-energetic 1
MeV proton beam in water. From the range-energy relati
Medical Physics, Vol. 24, No. 12, December 1997
,

ir

.
-

0
-

ship ~4! we findR0515.64 cm, and with Eq.~18! we obtain
s50.16 cm. The resulting Bragg curves with and witho
consideration of straggling as calculated with Eq.~15! and
~11!, respectively, are shown in Fig. 3.

III. CONSIDERATION OF THE ENERGY SPECTRUM

So far it has been assumed that the proton beam is
tially mono-energetic. Unfortunately, this assumption do
not correspond with reality. Real beams have an initial sp
tral energy distribution, which depends on the individu
characteristics of the accelerator, the beam guide, and
collimation system. The energy spectrumFE(E)DE, which
is the number of protons per cm2 with energies betweenE
and E1DE, can be quite different from the ideald-shape.
An obvious way to consider the energy spectrum is to p
form a weighted superposition of mono-energetic Bra
curves with weightsFE . In general, there is no analytica
solution to this problem, so that numerical methods have
be used. In this work we will use an approximation, whi
allows for an analytical solution of the form of Eq.~15!.

Typical energy spectra consist of two parts: A pea
which can be approximated by a Gaussian energy spec
aroundE5E0 , and a relatively small ‘‘tail’’ extending to-
ward low energies. LetsE,0 be the standard deviation of th
Gaussian. SincesE,0 is generally small (sE,0!E), the
range-energy relationship of Eq.~4! can be linearized around
E5E0 . Hence, the Gaussian energy spectrum translates
a Gaussian range spectrum, whose variance adds to thesmono

2

of the mono-energetic beam:

s25smono
2 1sE,0

2 S dR0

dE0
D 2

5smono
2 1sE,0

2 a2p2E0
2p22.

~19!

FIG. 3. Bragg curves with and without consideration of straggling for 1
MeV protons in water. The dotted line at the bottom is the dose contribu
from the fraction of protons that have nuclear interactions, i.e.,D2(z) or
D̂2(z) ~these are indistinguishable within the resolution of the figure!.
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TABLE I. Summary of constants and parameters used in the theoretical model. The values are for pro
water. The last two parameters are machine specific. The value ofs can be calculated fromsmonoandsE,0 using
Eq. ~19!.

Description Value Unit

p Exponent of range-energy relation 1.77 1
a Proportionality factor 0.0022 cm MeV2p

R0 Range aE0
p cm

b Slope parameter of fluence reduction
relation

0.012 cm21

g Fraction of locally absorbed energy re-
leased in nonelastic nuclear interactions

0.6 1

smono Width of Gaussian range straggling 0.012R0
0.935 cm

sE,0 Width of Gaussian energy spectrum '0.01E0 MeV
e Fraction of primary fluence contribut-

ing to the ‘‘tail’’ of the energy spectrum
'0.0– 0.2 1
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Consequently, the Gaussian energy spectrum can be co
ered simply by increasing thes in Eq. ~15! as compared to
its value from Eq.~17!. ~Note that in the previous section w
basically dealt with Gaussiandepthspectra, while here we
have to account for a Gaussianrange spectrum. However
since the depth-dose depends primarily on the distance
tween range and depth, this conceptual difference has
practical significance.!

The consideration of the tail of the energy spectrum
somewhat more difficult because it may depend on m
different factors, and its exact shape is not generally kno
Fortunately, we can utilize the fact that the total fluence c
responding with the tail is only a relatively small fraction,e,
of the fluenceF0 in the peak. For this reason, we can u
rather coarse models to approximate the spectrum of the
A very simple model that agrees at least with the expecta
thatFE(E) should be negligible atE50 and have a positive
slope for smallE is a linear ramp:FE(E)}E for 0<E
<E0 . Normalizing the integral ofFE(E) to eF0 yields

FE~E!5eF0

2E

E0
2 . ~20!

To avoid a discontinuity of the energy spectrum atE5E0 ,
the sharp edge of the ramp should be ‘‘smeared.’’ This w
be done implicitly by means of the incorporation of stra
gling later on. It should be noted that the average tail-to-p
ratio of the energy spectrum isA2psE,0e/E0 , which is in
the order of only 2%-3% ofe.

To calculate the depth-dose distribution resulting from
linear energy spectrum, it is necessary to translateFE(E)
into a range spectrumFR(R), whereFR(R)DR is the flu-
ence of protons with ranges betweenR andR1DR. This is
accomplished by means of the relationFR(R)
5FE(E(R))dE/dR. Using the range-energy relationship
Eq. ~4! gives

FR~R!5eF0

2R2/p21

E0
2pa2/p . ~21!
l. 24, No. 12, December 1997
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This means that the range spectrum resulting from the lin
energy spectrum is approximately constant (2/p21!1). In
fact, with the approximationp'2 we obtain:

FR~R!'const.5eF0

1

R0
. ~22!

The range spectrum must be convolved with the individ
depth-dose distribution as a function of the range to obt
the total depth-dose distribution,D tail , resulting from the tail
of the energy spectrum. Again, we can make simplificatio
which can be justified due to the relatively small value ofe.
First, we will go back to the case where range straggling w
ignored. Here the dose delivered by protons that h
nuclear interactions will be disregarded, i.e., it will be a
sumed thatD̂(z)5D̂1(z) @cf. Eqs.~11!, ~11a!#. Now we can
write D̂1 as a function ofz and R ~instead ofR0! and per-
form the convolution as follows:

D̂ tail~z!'
1

F0
E

z

R0
FR~R!D̂1~z,R!dR ~23!

'
eF0

R0%pa1/p~11bR0!
E

z

R0
~R2z!1/p21dR ~24!

5
eF0

R0%a1/p~11bR0!
~R02z!1/p. ~25!

Note that this expression is of the same form as the sec
term, D̂2(z), of Eq. ~11!. Straggling can now be considere
in the same way as in the previous section, which result
the final expressionD tail(z). Adding this expression to the
D(z) of Eq. ~15! gives

D~z!5F0

e2z2/4s1/pG~1/p!

A2p%pa1/p~11bR0!
F 1

s
D21/p~2z!

1S b

p
1gb1

e

R0
D D21/p21~2z!G . ~26!
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IV. COMPUTATIONAL METHODS

At first glance Eq.~26! looks rather complicated. How
ever, its length is mainly due to the many constants involv
Table I summarizes the constants and parameters for co
nience.

The ‘‘heart’’ of Eq. ~26! is the parabolic cylinder function
Dy(x). This function is tabulated.18 Public domain compute
programs for the calculation ofDy(x) are available. Forz
.20 numerical problems may occur becauseD~z! becomes
very large. However, forz.10 ~i.e., z,R0210s!, D(z)
agrees withD̂(z) to within 0.5% ~cf. Fig. 3!. Furthermore,
for z,25 ~i.e., z.R015s!, D(z) is negligible. Therefore,
we can approximateD(z) by

D~z!'H D̂~z!

D~z!

0

for z,R0210s
for R0210s<z<R015s
otherwise.

~27!

Alternatively, we can directly compute exp(2x2/4)Dy(x),
which is well-behaved for arbitrary~real! x values, andy
values relevant to this study. AFORTRAN computer program
for this calculation is available from the author on reques

The gamma function, which is required in Eq.~26!, is
tabulated and be computed within many commercially av
able mathematical computer programs. For thep value from
Table I we find:G(1/p)51.575. The depth-dose distributio
in water is therefore determined by

D̂H2O~z!5
F0

110.012R0
@17.93~R02z!20.435

1~0.444131.7e/R0!~R02z!0.565# ~28!

and

DH2O~z!5F0

e2~R02z!2/4s2
s0.565

110.012R0

3F11.26s21D20.565S 2
R02z

s D
1~0.157111.26e/R0!D21.565S 2

R02z

s D G .
~29!

V. COMPARISONS WITH MEASURED AND
NUMERICALLY CALCULATED DATA

To investigate the quality of the analytical approximati
~26! or ~29!, comparisons were made with measured a
numerically calculated depth-dose data. Since the ene
spectra of the beams were not generally known, the par
eterss, e, andR0 were varied to achieve an optimum fit t
the measured data.~It should be noted that measured dep
dose curves depend to some degree on the dosimeter.21 Care-
ful dosimetry is essential if one wishes to determine the
rameterss ande that are characteristic of the beam, and n
of the technique of measurement.! The value ofR0 could
also be determined from the range-energy relationship~4!
using the known nominal~extraction! energy of the accelera
Medical Physics, Vol. 24, No. 12, December 1997
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tor. However, for various reasons the nominal energy did
agree very well withE0 of the beam. Therefore it was chose
to useR0 as a fit parameter. In most cases the Bragg cur
were normalized to a maximum of 1.0 because no abso
dose values were available. The fit was performed by me
of trial and error. The development of an automatic fit pr
cedure should be relatively easy. However, the pressur
develop such an algorithm was not very high because
general very few~about five! iterations sufficed to achieve
good results. For the comparisons with the numerical data
parameters were directly taken from Table I, without a
fitting.

Incidentally, a general and elegant check of the dep
dose distribution is based on the rule thatR0 equals the depth
z80 at which the dose has dropped to 80% of its maxim
value beyond the Bragg peak.13 The analytical model of this
work confirms this rule. In fact, if nuclear interactions an
the effect of the energy tail are disregarded near the Br
peak, the relationz805R0 can be derived from Eq.~26!.
Under these assumptions the relation is strictly valid for
R0 , s, anda.

A. Comparisons with measured data

As a first step, the model was compared with measu
data published in the literature. In particular, the data p
lished in Fig. 5 of Larsson22 for the synchrocyclotron at Upp
sala and in Fig. 2 of Koehleret al.23 for the Harvard cyclo-
tron laboratory~HCL! were considered. The correspondin
values of the parameters and the maximum deviations
presented in Table II. The deviations are given in % for t
plateau region and in cm for the peak region. As can be s
from this table, the agreement is very good. Deviations ar
the order of magnitude of reading the data off the figures

Second, the analytical model was compared with m
sured data, which was kindly provided by several prot
centers. As a first example measured data from the radio
gery beam line of the HCL was considered. The measu
ments were performed with a Markus parallel plate cham
in a water tank. The beam was collimated to 4.8 cm dia
eter, representing a broad beam. The nominal energy
158.6 MeV, but there was some energy loss in the scatte
systems and in the tank wall, resulting in a range,R0 , of
only 13.5 cm. The beam divergence effect was remo
from the measurements by means of inverse square divis
Figure 4 shows the data and their analytical fit. A relative
high value ofe ~20%! had to be used to achieve a good fit
this example. However, there is a considerable amoun
uncertainty in this value because the effect resulting from

TABLE II. Parameters for the fit of Eq.~29! to measured data published i
the literature.

Source
R0

@cm#
s

@cm#
e

@%#

Max. Deviation

@%# @cm#

Larsson~Ref. 22! 23.4 0.29 2 22.3 10.14
Koehleret al. ~Ref. 23! 15.8 0.27 5 22.5 20.10
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tail of the energy spectrum and the divergence effect can
be fully separated~both result in an increased entrance dos!,
and because the degree of divergence was not exa
known.

As a second example a dataset from TRIUMF~TRI Uni-
versity Meson Facility!, Vancouver, Canada was considere
The dataset consisted of measurements with and withou
proton nozzle in the beam path, and for two nominal en
gies, 70 MeV and 116 MeV, each. No collimators were
serted, such that the data represents a broad beam. The
surements were carefully performed with an optical dio
~type BPW34! in a water phantom.5,24 Again, the beam di-
vergence effect was removed from the measurements
means of inverse square division before comparison with
analytical model. Figure 5 shows the very good fit obtain
Deviations are within the measurement error, which is
proximately given by the size of the symbols. Obviously, t
nozzle causes some additional low-energy contaminatio
the beam, thus requiring a higher value ofe for the fit.

B. Comparisons with numerically calculated data

As a further test of the model, comparisons were ma
with numerically calculated Bragg curves, which were tak
from dose calculation algorithms developed at TRIUMF
collaboration with DKFZ,5 and at PSI~Paul Scherrer Insti-
tute!, Villigen, Switzerland.4 Both algorithms were verified
through measurements and Monte Carlo calculations. In
case no normalization had to be done because the nume
results were given in absolute terms.

Figure 6~a! shows the comparisons for a mono-energe
175 MeV Bragg curve from the TRIUMF algorithm
~dashes!. The solid line results from applying Eq.~29! with
all parameters calculated using the methods presented in
work. Particularly,s was determined to be 0.2 cm from E

FIG. 4. Depth-dose measurements in water~big dots! for the HCL beam.
The solid line represents the analytical fit usingDH2O(z) of Eq. ~29!.
Medical Physics, Vol. 24, No. 12, December 1997
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~18! alone, assE,0 should be zero for a mono-energetic
beam. For the same reason,e was set to zero. The compari-
son shows that the analytical model predicts a 5% high
peak dose than the TRIUMF algorithm, while the entranc
dose is somewhat smaller. The reasons for this discrepa
can be manifold and are not yet completely understoo
However, it should be noted that by slightly increasing th
value of s to 0.23 cm, and settinge56%, an excellent fit
can be achieved. This could not be demonstrated in Fig. 6~a!
because the curve was indistinguishable from the dash
TRIUMF curve.

The PSI examples shown in Fig. 6~b! ~dashes! are calcu-

FIG. 5. Depth-dose measurements in water~symbols! for the TRIUMF beam
with ~a! and without~b! nozzle in the beam path. The estimated measur
ment error is roughly given by the size of the symbols. The solid line
represent the analytical fit usingDH2O(z) of Eq. ~29!.
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lated Bragg curves for 138 MeV and 177 MeV beams with
Gaussian energy spectrum. From the known values of
momentum band of the beam, the values ofsE,0 were deter-
mined to be 1.32 MeV and 1.52 MeV, respectively. All oth
parameters were taken from Table I;e was set to zero. The
resulting analytical curves~solid lines! show good agreemen
with the PSI curves. In the 138 MeV data there is an app
ent shift corresponding with an error inR0 of 1 mm. Other
parameters such as the entrance dose and the width
height of the Bragg peak agree very well. In the 177 Me
example there is a minor deviation at medium depths. T
most likely explanation for this is that the PSI algorithm

FIG. 6. Comparison of numerically calculated Bragg curves~----! with the
analytical model~—! of this work, Eq.~29!, using the parameters of Table
I without fitting. ~a!: data from TRIUMF~Ref. 5!; ~b!: data from PSI~Ref.
4!.
Medical Physics, Vol. 24, No. 12, December 1997
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includes a nonlocal model for the consideration of the d
produced by nonelastic nuclear interactions, which cause
increased dose at medium depths.4

VI. DISCUSSION AND CONCLUSIONS

It has been shown that the depth-dose curve of a br
proton beam perpendicularly incidenting on a homogene
medium can be represented analytically through terms gi
by the product of a Gaussian and a parabolic cylinder fu
tion. In a way this can be seen as a ‘‘natural’’ representat
of the proton Bragg curve, just like the depth-dose curve o
proton beam can be described by means of exponent
This analytical expression for the Bragg curve is deriv
from several phenomenological approximations of the int
action principles of protons with matter, and it is based o
coarse model of the primary energy spectrum of typi
beams. The validity of these approximations is proved by
fact that the model can easily be fitted to measured d
within the error of measurement. Very good agreement
also been found without parameter fitting between the mo
predictions and numerical depth-dose data calculated at o
institutions. The model is valid for clinically relevant ene
gies up to about 200 MeV. In most cases that have b
studied a systematic deviation at depths around 3/4 of
maximum range has been found, where the model pre
tions are consistently slightly too low. This might be attri
uted to the coarse approximation of the energy spectr
However, a more likely explanation is the oversimplifie
model for the dose deposition resulting from nuclear inter
tions. Here some further development might be worthwh
though the deviations are very small, with less than 3% re
tive deviation.

Potential applications of the closed form representation
the Bragg curve are primarily seen in theoretical studies
garding radiotherapy planning and optimization. Furth
more, the model may also be useful in clinical treatme
planning programs. One point of practical concern is the c
culation speed. ‘‘Brute force’’ calculations of the product
the Gaussian with the parabolic cylinder function are re
tively slow. However, there is some potential for improv
ments. For example, it seems possible to resolve this pro
into cubic splines, which allows for a very rapid calculatio
~E. de Kock, NAC, private communication!.

It is evident that the knowledge of the Bragg curve alo
is not sufficient for any practical application. Howeve
methods for the consideration of other relevant effects,
which the most important ones are the lateral widening of
beam at depth due to multiple coulomb scattering, and
influence of inhomogeneities, are well known. The late
dose fall-off can be modeled simply and accurately us
Gaussian kernels.6 The simplest form of an inhomogeneit
correction method, which still is sufficiently accurate in mo
cases, is a pathlength scaling approach.
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APPENDIX A: MATHEMATICAL CONSIDERATION
OF RANGE STRAGGLING

We wish to convolve terms of the form (R02z)n21 from
the numerator of Eq.~11! with the Gaussian depth stragglin
distribution, i.e., we calculate

F~z,R0!5
1

A2ps
E

2`

R0
~R02 z̄!n21e2~z2 z̄ !2/2s2

dz̄. ~A1!

Setting

u:5R02 z̄, v:5R02z ~A2!

yields

F~v !5
1

A2ps
E

0

`

un21e2~u2v !2/2s2
du ~A3!

5
1

A2ps
e2v2/2s2E

0

`

un21e2~u222uv !/2s2
du. ~A4!

This integral can be solved in closed form~e.g., Ref. 19, p.
337!. The result is

F~v !5
1

A2ps
e2v2/2s2S 1

s2D 2n/2

G~n!ev2/4s2
D2nS 2

v
s D

~A5!

5
1

A2ps
ev2/4s2

snG~n!D2nS 2
v
s D , ~A6!

whereG(x) is the gamma function andDy(x) is the para-
bolic cylinder function.18,19

APPENDIX B: DETERMINATION OF THE RANGE
STRAGGLING WIDTH

The mean square fluctuation in the range,s2, for a given
initial energy can be determined from the mean square fl
tuation in the residual energy,sE

2, at given depths using:11

s25E
0

R0 d

dz
~sE

2 !S dE

dzD 22

dz. ~B1!

For energies above about 10 MeV the termd/dz(sE
2) can be

approximated using Bohr’s classical formula~cf. Refs. 11,
25!:

d

dz
~sE

2 !'
1

4pe0
2 e4NZ5:a8. ~B2!

Heree is the electron charge, andNZ is the electron density
of the stopping matter. For water we obtain:a8
'0.087 MeV2/cm.
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Inserting the stopping power from Eq.~6! into Eq. ~36!
we can now calculates2:

s25a8E
0

R0S 1

pa1/p ~R02z!1/p21D 22

dz ~B3!

5a8p2a2/pE
0

R0
~R02z!222/pdz ~B4!

5a8
p2a2/p

322/p
R0

322/p . ~B5!
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