Mathematical Optimization in Radiotherapy Treatment Planning

Ehsan Salari

Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School

HST S14 April 15, 2013

Introduction to Photon Therapy

Treatment Planning for 3D-conformal Radiotherapy

Topics

- Introduction to Photon Therapy
- 3D-conformal Radiotherapy (3D-CRT)
- Intensity-modulated Radiotherapy (IMRT)
- Multi-criteria IMRT Treatment Planning
- Temporal Treatment Planning and Fractionation
- Advanced Topics in RT Treatment Plan Optimization

Radiotherapy

- Each year around 1.6 million patients are diagnosed with cancer in the U.S.
 - 50–65% of them benefit from some form of radiotherapy
- Radiotherapy is often used in combination with other treatment modalities
 - e.g., surgery, chemotherapy, etc.
 - to control localized disease

Radiotherapy Goal

 The goal of radiotherapy is to deliver a prescribed radiation dose to the tumor while sparing surrounding healthy tissues to the largest extent possible

Radiation Biology

- Radiation kills cells by damaging their DNA
- Radiation action mechanisms
 - directly ionizing
 - charged particles, e.g., electrons, protons, and α-particles
 - indirectly ionizing
 - x- and γ- rays

Figure: [Hall and Giaccia, 2006]

6/39

Photon Therapy

- Photon therapy uses high-energy photons
 - x-rays (1-25 MV) generated by
 - linear accelerators (LINAC)
 - Cobalt units (⁶⁰Co)
- Radiation source is mounted on a gantry

Radiation Dose

 Dose is the measure of energy deposited in medium by ionizing radiation per unit mass

- Dose deposited in patient is measured using a fine cubical grid
 - cubes are called voxels

Dose Distribution Visualization

- Visualizing the dose distribution
 - dose-volume histogram (DVH)
 - isodose lines
 - o dose-wash diagram

< ロ > < 同 > < 回 > < 回 >

Dose Volume Histogram (DVH)

- Dose distribution can be characterized similar to a random variable
 - f: dose distribution function
 - F: cumulative dose distribution function
 - DVH: 1 F and differential DVH: f

Dose Evaluation Criteria

Measuring the dose distribution quality

- physical criteria
 - penalty functions, excess and shortfall criteria, etc.
- biologically-motivated criteria
 - tumor control probability (TCP), normal-tissue complication probability (NTCP), equivalent uniform dose (EUD), etc.

Physical Criteria: Penalty Functions

• Voxel-based penalty functions $G : \mathbb{R}^{|I|} \to \mathbb{R}$

$$G(\mathbf{d}) = \|\mathbf{d} - \mathbf{d}^*\|_{p}$$

$$G(\mathbf{d}) = \sum_{i \in I} \gamma_i^- \max \{d_i - t_i, 0\}^p + \gamma_i^+ \max \{t_i - d_i, 0\}^q$$

- Notation
 - I: set of all voxels in relevant structures
 - $\mathbf{d} = (\mathbf{d}_i : i \in I)^\top$: vector of dose distribution
 - t_i : prescribed (threshold) dose in voxel $i \in I$
 - γ_i[−], γ_i⁺: relative importance factors for underdosing vs. overdosing in voxel *i* ∈ *I*

Physical Criteria: Excess and Shortfall Criteria

- Based on 1α fraction of a structure that receives the maximum (minimum) dose
- Defined using dose distribution functions *f*, *F*

$$\alpha - \operatorname{VaR} \left(\mathbf{d} \right) = \min_{d \ge 0} \left\{ d : F(d) \ge \alpha \right\}$$
$$\alpha - \operatorname{CVaR} \left(\mathbf{d} \right) = \min_{d \ge 0} \left\{ d + \frac{1}{1 - \alpha} \int_{d}^{\infty} (z - d) f(z) dz \right\}$$

[Romeijn and Dempsey, 2008]

Notation

•
$$\mathbf{d} = (\mathbf{d}_i : i \in I)^\top$$
: vector of dose distribution

Biological Criteria: Tumor Control Probability

 Measuring the probability that no *clonogenic* cell survives in the target

$$\mathsf{TCP}\left(\mathsf{d}\right) = e^{-N \cdot \mu(\mathsf{d})}$$

- Notation
 - N: number of initial clonogenic cells
 - μ (d): survival fraction of clonogenic cells in the target after receiving dose distribution d

Biological Criteria: Equivalent Uniform Dose

• Finding an *equivalent uniform dose* that results in the same biological damage as dose distribution **d** in a given structure

$$\mathsf{EUD}(\mathbf{d}) = \left(\sum_{i \in I} d_i^{\alpha}\right)^{\frac{1}{\alpha}}$$
 [Niemierko, 1999]
tail-EUD (\mathbf{d}) = $d_0 - \Omega^{-1} \left(\Omega\left(\min\left\{\mathbf{d}, d_0\right\}\right)\right)$
[Bortfeld et al., 2008]

- Notation
 - for targets $\alpha < \mathbf{0}$
 - for organs-at-risk $\alpha \geq$ 1 depending on the organ structure
 - Ω (**d**): generalized Ω -mean of the dose distribution **d**

Biological Criteria: Normal Tissue Complication Probability

 Measuring the probability of complications in the critical structure

NTCP
$$(\mathbf{d}) = \Phi\left(\frac{\mathsf{EUD}(\mathbf{d}) - TD_{50}}{mTD_{50}}\right)$$

[Lyman, 1985], [Kutcher and Burman, 1989]

- Notation
 - *TD*₅₀: uniform dose at which the structure exhibits a 50% complication probability
 - m: shape parameter of NTCP curve
 - Φ: c.d.f. of standard normal distribution

Radiotherapy Treatment Planning

- The process of designing radiotherapy treatment for a cancer patient
 - a joint effort by radiation oncologists, medical physicists, and dosimetrists
- Treatment design is to find optimal radiotherapy machine settings to deliver desired dose distribution
 - these settings are patient specific

17/39

3D-conformal Radiotherapy (3D-CRT)

- At a given distance, radiation source provides a rectangular field
- To deliver a *conformal* dose distribution, radiation beam is shaped
 - beam's eye-view (BEV) determines projection of patient volume in the radiation beam plane
 - at each beam angle using BEV we determine an *aperture* that conforms to tumor shape

3D-CRT: Aperture Radiation Fluence

- Radiation source provides a constant radiation *flux*
 - flux: rate of particles passing through unit area
- For each aperture, we need to determine its *fluence*
 - fluence: radiation flux integrated over time
- For a fixed radiation flux, fluence \propto exposure time

3D-CRT: Aperture Dose Deposition

- We determine dose deposited from an aperture in medium per unit of exposure time
 - unit of exposure time is monitor unit (MU)
- There are three major dose calculation methods
 - pencil beam
 - convolution-superposition
 - Monte-carlo simulation

3D-CRT: Wedges and Blocks

• *Wedges* and *blocks* can be positioned in the radiation field to create gradient in the aperture fluence

Figure: [Lim et al., 2007]

3D-CRT: Forward Planning

- Forward Planning involves manually determining
 - beam angles
 - wedges and blocks
 - aperture exposure time (so-called intensity/weight)

3D-CRT Example

- Consider a paraspinal cancer case
 - target wraps around the spinal cord
- Prescribed and threshold doses are
 - uniform dose of 60 Gy to target
 - avoiding dose beyond 45 Gy to spinal cord
- We consider a simplified 2D voxel grid

$$> 60 > 60 > 60$$

 $> 60 < 45 > 60$
 $> 60 > 60 > 60$

< < p>< < p>

23/39

24/39

3D-CRT Example: Forward Planning

 In treatment planning system, aperture intensities are iteratively tweaked and dose distribution changes are observed until desirable intensities are achieved

3D-CRT: Inverse Planning

- Can we avoid iterative process of aperture tweaking in forward planning?
- *Inverse planning* aims at directly determining appropriate aperture intensities using *mathematical optimization*

26/39

3D-CRT Example: Inverse Planning

3D-CRT Example: Inverse Planning

 Given D and ideal dose distribution d*, we need to find appropriate y such that

$$\mathbf{d}^* = \mathcal{D}^ op \mathbf{y}$$

 $\mathbf{y} \ge \mathbf{0}$

- it is overdetermined ($\|V\| >> \|K\|$)
- D is sparse
- To avoid this issue we use mathematical optimization

	У	′1 ↓		
	3	5	8	
	2	9	7	
	1	4	6	
V 2				V 3

*Y*₁

 $\mathbf{d} = \mathcal{D}\mathbf{v}$

35 29 8

6

28/39

3D-CRT Example: Inverse Planning

- We use some dose evaluation criteria
 - e.g., piecewise quadratic voxel-based penalties

$$G(\mathbf{d}) = \underbrace{\max \left\{ d_9 - 45, 0 \right\}^2}_{\text{spinal cord penalty}} + \frac{1}{8} \underbrace{\sum_{\nu=1}^8 \left(d_\nu - 60 \right)^2}_{\text{target penalty}}$$

 We can also enforce constraints on dose distribution

$$\begin{array}{ll} d_{v} \geq 60 & v = 1, \ldots, 8 \\ d_{9} \leq 45 \end{array}$$

29/39

3D-CRT Example: Finding Optimal Intensities

 G values and contour lines as a function of aperture intensities

3D-CRT Example: Finding Optimal Intensities

 Optimal intensities change if constraints on dose distribution are enforced, e.g., d₉ ≤ 45 (maximum dose in spinal cord)

・ロト・西・・日・・日・ 日・ シック

3D-CRT: Mathematical Optimization

 Inverse planning uses mathematical optimization to determine aperture intensities

 $\min G(\mathbf{d})$

subject to

$$\begin{split} \mathbf{d} &= \mathcal{D}^\top \mathbf{y} \\ H\left(\mathbf{d}\right) \leq \mathbf{0} \\ \mathbf{y} \geq \mathbf{0} \end{split}$$

Notation

- K: set of apertures
- $\mathcal{D} = [\mathcal{D}_{kv}]$: dose deposition coefficient matrix
- $\mathbf{d} = (d_v : v \in V)^\top$: vector of dose distribution
- $\mathbf{y} = (\mathbf{y}_k : k \in \mathbf{K})^\top$: vector of aperture intensities
- G: dose evaluation function
- H: dose constraints

<ロ> < 部> < き> < き> き のへで 31/39

Different Classes of Optimization Problems

- Based on properties of dose evaluation criteria and constraints problems are classified into
 - Linear Programming (LP)
 - e.g., piecewise linear penalties
 - Nonlinear Programming (NLP)
 - e.g., piecewise quadratic penalties, TCP, NTCP, EUD
 - Integer Programming (IP)
 - e.g., dose-volume histogram (DVH) criterion: at least 95% of target voxels receive at least 60 Gy

$$\frac{1}{\|V_T\|}\sum_{v\in V_T}z_v\leq 0.05$$

 $z_{\nu} \in \{0, 1\}$ indicates if $d_{\nu} \leq 60$ or not

3D-CRT Example: NLP Solution Approach

NLP problem

min
$$G(\mathbf{d}) = \sum_{\nu=1}^{8} (d_{\nu} - 60)^2$$

subject to

$$egin{aligned} \mathbf{d} &= \mathcal{D} \left(egin{array}{c} y_1 \ y_2 \end{array}
ight) \ d_9 &\leq 45 \ y_1, y_2 &\geq 0 \end{aligned}$$

	3	5	8	
	2	9	7	
	1	4	6	
y ₁				V ₂

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

• Dose variables can be substituted with aperture intensities $G(\mathbf{d}) \rightarrow G(\mathcal{D}^{\top}\mathbf{y})$

3D-CRT Example: Gradient Projection Method

- Gradient Projection Method (see [Rosen, 1960])
 - at iteration k, given y_k, steepest descent is the negative gradient (i.e., −∇G_k)
 - moving along $-\nabla G_k$ may violate constraints
 - $-\nabla G_k$ is projected onto feasible region $-P_k \nabla G_k$ to obtain
 - improving and feasible direction

3D-CRT Example: Gradient Projection Method

- Steps of the algorithm at iteration k
 - 1 gradient: $\mathbf{y}_k = \begin{pmatrix} 10\\ 80 \end{pmatrix}, \nabla G_k = \begin{pmatrix} -153.8\\ -79.6 \end{pmatrix}$
 - 2 projection matrix: $P_k = I A_k^{\top} (A_k A_k^{\top})^{-1} A_k$, active constraints $A_k = (0.5 \ 0.5), P_k = \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix}$

3 projected gradient: $\mathbf{s}_k = -P_k \nabla G_k = \begin{pmatrix} 37 \\ -37 \end{pmatrix}$

3D-CRT Example: Gradient Projection Method

4 line search:

$$\lambda^* = \operatorname*{argmin}_{\lambda \geq 0} G(\mathbf{y}_k + \lambda \mathbf{s}_k) = 0.95$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \lambda^* \mathbf{s}_k = \begin{pmatrix} 45\\ 45 \end{pmatrix}$$

• At iteration
$$k + 1$$

•
$$\mathbf{s}_{k+1} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
 and \mathbf{y}_{k+1} is the optimal solution

3D-CRT: Summary

- Radiotherapy is used to treat/control localized disease
- In 3D-CRT, aperture at each beam angle conforms to tumor shape in beam's eye-view
- In 3D-CRT, treatment planning involves determining aperture intensities
 - forward planning
 - we manually determine intensities in an iterative process
 - inverse planning
 - mathematical optimization techniques are used

References I

Bortfeld, T., Craft, D., Dempsey, J. F., Halabi, T., and Romeijn, H. E. (2008). Evaluating target cold spots by the use of tail euds. International Journal of Radiation Oncology* Biology* Physics, 71(3):880–889.

Hall, E. J. and Giaccia, A. J. (2006).

Radiobiology for the Radiologist, 6e. Lippincott Williams & Wilkins.

Kutcher, G. J. and Burman, C. (1989).

Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method gerald.

International Journal of Radiation Oncology* Biology* Physics, 16(6):1623–1630.

Lim, G. J., Ferris, M. C., Wright, S. J., Shepard, D. M., and Earl, M. a. (2007).

An Optimization Framework for Conformal Radiation Treatment Planning. INFORMS Journal on Computing, 19(3):366–380.

Lyman, J. T. (1985).

Complication probability as assessed from dose-volume histograms. *Radiation Research*, 104(2s):S13–S19.

Niemierko, A. (1999).

A generalized concept of equivalent uniform dose (eud). Medical Physics, 26(6):1100.

References II

Romeijn, H. E. and Dempsey, J. F. (2008).

Intensity modulated radiation therapy treatment plan optimization. Top, 16(2):215–243.

Rosen, J. B. (1960).

The gradient projection method for nonlinear programming. part i. linear constraints. *Journal of the Society for Industrial & Applied Mathematics*, 8(1):181–217.